
Collusion in Capacity Under Irreversible
Investment

Thomas Fagart

November 2017

Stellenbosch University Centre for Competition Law and Economics
Working Paper Series

WPS01/2017

Working Paper Series Editor: Roan Minnie
18331521@sun.ac.za



Collusion in Capacity Under Irreversible Investment

Thomas Fagart∗†

September 14, 2017

Abstract

Under imperfect competition, firm’s incentive to deviate from a collusive agreement

is usually short term: the firm increases its immediate profit but reduces its future

profits due to the upcoming competitors’ reaction. When firms have to invest to

increase their production, and that investment is irreversible, a firm may deviate to

preempt its competitors and obtain a dominant position on the market. When firms

are more patient, preemption is more profitable, and collusion may thus be harder to

sustain. This result, contrasting with the literature on collusion, suggests that folk

theorems may be inappropriate to study collusion in Markovian frameworks.
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1 Introduction

In many industries, the production of firms is limited by their infrastructure, i.e. the

amount of factories or equipment that they own. This production capacity may evolve in

time, as firms invest in new infrastructure. However, the cost of building a new capacity

is usually sunk and investments are thus (at least partially) irreversible. These features of

capacity limitation and irreversible investment impact the way competition works. This is

the case in a famous example of collusion: the lysine cartel.

Lysine is an essential amino acid that stimulates growth and lean muscle development

in hogs, poultry, and fish. It has no substitute. By the late 1960s, Japanese biotechnology

firms had discovered a bacterial fermentation technique that transformed the production of

lysine. The process involves the fermentation of dextrose into lysine and requires a specific

chemical infrastructure. The cost of this infrastructure is therefore sunk.1 This technique

is considerably cheaper than conventional extraction methods. By the end of the 1980s,

there were three major players in the lysine market: Ajinomoto and Kyowa Hakko based in

Japan, and Sewon based in South Korea. In 1988, ADM acquired a fermentation technique

for lysine and began building the world’s largest lysine factory in 1989. ADM’s entry was

effective in February 1991.

This entry of ADM into the lysine market led to the creation of one of the best-known

cartels in history. The consortium ran from June 1992 to June 1995, date at which the

FBI raided the headquarters of the participating firms. It was the first global price-fixing

conspiracy to be convicted by US or EU antitrust authorities in 40 years, and the financial

penalties amounted to $305 million. The cartel started just after Archer-Daniels-Midland

Company (ADM) entered into the lysine business. However, between the end of 1992 and

early 1993, ADM invested massively to increase its production capacity, which rose from 60

000 tons per year to 113 000 tons. At the same time, ADM started to cheat on the collusive

agreement, and a price war began in March 1993. The price war ended in November 1993,

and the cartel carried on peacefully until the intervention of the FBI.2

1There is some possibility of transforming a lysine plant to produce another amino acid, however this is

costly.
2For more information on the lysine cartel, see the books by Eichenwald (2000) and Connor (2000), and
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This cartel case emphasizes the following point: capacities can evolve during periods of

collusion. Several papers focus on the impact of constant capacity constraint on collusion,

but very few deal with the strategic evolution of capacity. This work attempts to fill that

gap.

More precisely, this work shows the existence of long-run incentives for deviation. Indeed,

to deviate from a collusive equilibrium, a firm has to invest in new units of capacity in order

to increase its production. In doing so, the deviating firm commits to its new capacity

level due to the irreversibility of investment. This reduces its opponent’s incentive to invest

in order to punish the deviating firm. In some cases, it even prevents the opponent from

implementing any punishments. A firm may thus increase its long-run profit by deviating

from the collusive equilibrium. This contrasts with the standard theory of collusion, whereby

deviation’s only effect is to increase firm’s short-run profits, while reducing long run profits

due to punishment. This is consistent with the lysine case, where ADM’s deviation in 1993

and the building of new capacity allowed the firm to increase its market share in the American

market from 44 percent in 1992 to 57 percent in following years.

In the literature on collusion and capacity constraint, Compte et al (2002) focus on the

case of price competition with inelastic demand under fixed capacity constraints, and show

that larger firms have the most incentives to deviate. Under Cournot competition, linear

demand and soft capacity constraint, Vasconcelos (2005) finds that the smallest firms have

the most incentives to deviate. Under a similar framework, Bos and Harrington (2010) show

that, when a cartel is not inclusive, deviation may be driven by medium-sized firms. In all

of these works, asymmetry between firms’ capacity hinders collusion.

Fabra (2006) and Knittel and Lepore (2010) focus on the impact of capacity con-

straint on collusion in presence of demand evolution, and show that a collusive price can

be counter-cyclical. Garrod and Olczak (2014) show that, under imperfect monitoring,

capacity constraints may help to detect a deviation.

All of these works assume that capacities are fixed and study the impact of capacities

on collusion.3 To my knowledge, only two papers focus on the evolution of capacity during

the articles by Connor (2001), Roos (2006) and Connor (2014).
3Compte et al (2002) and Vasconcelos (2005) study the impact of a change in the capacity distribution

due to a merger, and Knittel and Lepore (2010) endogenize the choice of capacity at the beginning of the
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collusion. Paha (2016) adapts the model devised by Besanko and Doraszelski (2004) to

simulate the investment behavior of firms when they collude in price but not in capacity.

Besides his result on the effect of uncertainty on cartel formation, Paha presents counter-

intuitive evidence that a low discount rate can impair collusion. In a duopoly model with

linear demand and partially irreversible investment, Feuerstein and Gersbach (2005) studies

a grim trigger strategy in which the cooperative behavior for each firm involves installing half

of the monopoly capacity, and the punitive behavior involves investing until the marginal

value of capacity equals the price of investment. They show that these strategies can form an

equilibrium, but at a lower discount rate compared to the case of fully reversible investment.

In the present paper, I study a Cournot duopoly with irreversible investment in capacity

in a discrete time setting. More precisely, at each point in time, the production of each firm

is determined by its level of capacity. Firms may decide to increase their capacity through

buying assets. The price of investment is linear. The results depend on the period of time,

which can be interpreted as the degree of flexibility of the firms’ investment decisions. When

the period is long, it takes time for the firm to punish a deviation, whereas when the period

is close to zero, firms react instantly to any deviation. This model can thus be viewed as a

generalization of Feuerstein and Gersbach (2005).

In this framework, firms invest only at the beginning of the game in the non-cooperative

equilibrium. If both firms start with sufficiently low initial capacity, then they invest to the

same Cournot level of capacity. When one of the firms starts out with an initial capacity

that is higher than the Cournot level, then the firm is committed to this level of capacity due

to the irreversibility of investment, and thus its opponent reacts by investing at a capacity

level lower than the Cournot level. The firm with the high initial capacity does not invest.

To study collusion, I focus on a particular kind of strategy, i.e. the grim-trigger strategy

for status quo. This consists in the firm keeping its initial capacity as long as its opponent also

keeps its own initial level of capacity. When one of the firms deviates, the other responds by

investing as in the non-cooperative equilibrium. However, if the deviating firm has installed

a capacity larger than the Cournot outcome, then it has committed itself to this capacity for

the rest of the game, and the non-cooperative equilibrium is for the punishing firm to invest

less than the Cournot outcome. This is the long run effect of the deviation: the deviating

game. However, at the time when collusion is implemented, the capacities are fixed.
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firm can gain a size advantage during the deviation, which persists for the rest of the game.

The usual short-run effect is also present: there is a period, between the implementation of

the deviation and the implementation of the punishment, when the deviating firm is the only

firm to have a capacity larger than the collusive capacities. Both short-run and long-run

effects are important to determine a firm’s incentives to deviate.

Focusing on the limit case in which the period of time shrinks to zero allow to isolate

the long run effect. In such case, there is a parallel between the decision of the Stackelberg

leader and the optimal deviation. Indeed, the punishing firm decides on its capacity taking

into account the capacity already installed by the deviating firm. Collusion is then only

possible if the Stackelberg profit is under half of the monopoly profit. A low discount rate is

thus harmful for collusion, as more patient firms are more likely to invest, and then prefer

becoming the Stackelberg leader rather than obtaining half of the monopoly profit. When

the period of time is positive, the short-run effect may compensate the long-run one and the

impact of the discount rate on collusion will depend on which effect dominates.

These findings provide intuition on the results of Paha (2016) and Feuerstein and Gers-

bach (2005). In Paha (2016), the counter-intuitive effect of a low discount rate on the

possibility of collusion comes from the domination of the long-run effect over the short-run

effect. Feuerstein and Gersbach (2005) finds the opposite result (on discount rate) because

the Stackelberg leader’s profit with linear demand equals half of the monopoly profit. There-

fore, the long-run effect does not permit collusion to be implemented (with linear demand),

and collusion is more difficult with irreversible investment than with reversible investment

as the short-run effect must compensate the negative long-run effect. This depends on the

form of profit assumed; the introduction of a simple quadratic production cost leads to a

different result.

Section 2 presents the model and the non-cooperative equilibrium. Section 3 focuses on

the collusive equilibrium for status quo, with the short-run and long-run effects of deviation.

Section 4 concludes.
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2 A Framework with Irreversible investment

Model

I consider a market with two firms (A and B) competing à la Cournot with a homogenous

product, in a dynamic time setting similar to that of Sannikov and Skrzypacz (2007).

Time is continuous and the horizon is infinite, but firms only take decision at discrete times

t = {0, τ, 2τ, ...}. The game is therefore discrete.4 The continuous time framework makes

it possible to vary τ , the duration of time periods between which investment decisions are

made.

More precisely, at each time t = nτ (n ∈ N) firms simultaneously decide whether extend

their capacity through buying assets. Firms start with an initial capacity ki0 (for i ∈ {A,B})
and the capacity of firm i at time t is thus kit = kit−τ + I it , where I it denotes the investment

of firm i at time t (I it ≥ 0). During the time interval [t, t+ τ [ the quantity produced by firm

i is determined by its capacity leading to a production constraint:

for all s ∈ [t, t+ τ [, qis = kit. (1)

The price of the good is a function of the total quantity produced, P
(
qAt + qBt

)
and the

production cost of firm i is c(qit). The price of investment, p+, is linear, and firms face the

same discount factor δ ∈]0, 1[. The profit of firm i made during the time interval [t, t+ τ [ is

then fully determined by the firms’ capacity at time t:∫ t+τ

t

δs
[
P
(
qis + q−is

)
qis − c(qi)

]
ds = δt

(1− δτ )
ln (1/δ)

[
P
(
kit + kjt

)
kit − c(kit)

]
(2)

where kjt is the capacity of the opponent of firm i. For a vector of capacity kt =
(
kit, k

j
t

)
, the

inter-temporal profit of firm i is then given by:

Πi =
∑
t=0,τ,..

δt
[
(1− δτ ) πi(kt)− p+I it

]
, (3)

4Even if firms’ decisions are taken at a discrete date, this game is not a repeated game stricto sensu, i.e.

the stage games are not independent as the capacity installed at time t is present at time t+ τ .
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where πi(kt) is defined by:

πi(kt) =
P
(
kit + k−it

)
kit − c(kit)

ln (1/δ)
. (4)

πi is the inter-temporal profit of firm i when there is no investment during the game.

I assume that firms’ strategies are Markovian, meaning that the investment at time t is

a function of the capacities of the industry at time t− τ , I it = Î i(kt−τ ).
5 The profit of firm i

can then be rewritten:

Πi(k) = (1− δτ ) πi
(
k + Î(k)

)
− p+I i(k) + δτΠi

(
k + Î(k)

)
. (5)

Î∗(k) is then a Markovian equilibrium if and only if, for each i ∈ {A,B},

Î∗i(k) = arg max
Ii

{
(1− δτ )πi

(
ki + I i, kj + Î∗j(k)

)
− p+I i + δτΠi

(
ki + I i, kj + Î∗j(k)

)}
,

(6)

where Î∗j(k) is the strategy of firm j, and the equilibrium profits, Π∗, are defined by:

Π∗i (k) = (1− δτ ) πi(k + Î∗(k) )− p+Î i(k) + δτΠ∗i

(
k + Î∗(k)

)
. (7)

The following assumption ensures the existence of Markovian equilibria.

Assumption A: The cost function, c(.), is a twice-differentiable positive function such

that c′ ≥ 0, c′′ ≥ 0. P (.) is also a twice-differentiable positive function, with P ′ < 0, P ′′ < 0

when P is strictly positive.

Non-cooperative Equilibrium

As usual in dynamic competition with an infinite horizon, there exist a multiplicity of

equilibria. The issue is to determine which equilibrium is the non-cooperative one. In a

classic model of repeated Cournot competition, the non-cooperative equilibrium is given by

the repetition of stage game equilibrium. However, in the present model, periods are linked

5For simplicity of notation, a variable with a hat will be a function of the state variable, a variable with

a capital index will indicate a function of the competitor’s capacity.
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by firms’ capacity, and the stage game depends on the past. There is then no clear non-

cooperative equilibrium.6 The objective of this sub-section is to defined one of the Markovian

equilibrium as the non-cooperative one.

There exists a Markov perfect equilibrium in which the firms’ strategies are to invest in

the first period, and not in the rest of the game. This Markov perfect equilibrium is defined

as the non-cooperative one. There are three reasons for this. First, the firm’s strategies are

simple, without any punishment scheme (as the firm does not invest after the first period).

Second, when firms start with the same level of capacity, this equilibrium corresponds to the

classic equilibrium of repeated Cournot competition. Finally, let us define a finite game with

the same payoff functions but in which firms can only take decisions for the first T period

of the game (T > 1). This game features a unique Markov perfect equilibrium that exhibits

the same investment behavior as the equilibrium defined to be the non cooperative one.7

In order to state proposition 1, let kiBR be the best response capacity of firm i, i.e. the

level of capacity that firm i will install if firm j installs a level kj, and firm i has no initial

capacity:
∂πi
∂ki

(kiBR, k
j) = p+. (8)

Indeed, when there is no investment, Πi = πi. As the profits are symmetric for both firm,

kABR(.) = kBBR(.) and the best response capacity will be written kBR(.) in the following. The

Cournot level, kc, is then given by:

kBR(kc) = kc. (9)

The Cournot level is the equilibrium of the game when both firms have no initial capacities.

When firms do have initial capacities, the equilibrium is given by proposition 1.

Proposition 1 The following strategies define a Markov perfect equilibrium:

Î∗i(k) = max
{
k̂∗i(k)− ki, 0

}
, (10)

6Unlike in standard stationary games, here there exists an infinity of stationary states, and the equilibrium

depends on the path chosen by the firms, and on their initial capacities.
7This is also the unique sub-game perfect equilibrium.
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where k̂∗i(k) is defined by:

k̂∗i(k) =

 kBR(kj) if kj > kc

kc if kj ≤ kc
. (11)

All investments are made at the beginning of the game, and the equilibrium path is
{
Î∗(k0), 0, 0, ..

}
.

This equilibrium will be defined as the non-cooperative one.

0,0 k t
A

H

k t
B

kIrrk t
A

kIrrk t
B

kC

kC

Figure 1: non-cooperative equilibrium

Proposition 1 presents the three possible scenarios depending on the initial capacities.

If initial capacities are low enough, both firms invest, and the equilibrium is the Cournot

equilibrium.8 If one of the firms has a high initial capacity and the other firm a low one, the

biggest firm will want to reduce its capacity but wil be constrained by the irreversibility of

8With a marginal cost of investment p+.
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capacity. The smaller firm then adjusts its capacity to the initial capacity of its opponent,

investing until its best response level. Finally, when the initial capacity of both firms is too

high, no one invests and the firms keep their initial capacities forever.

3 Collusive agreement for status quo

Agreement for status quo

In this section I consider a specific collusive strategy, i.e. the collusive agreement for status

quo. This consists in each firm keeping its initial capacity as long as the other firm also

keeps its initial capacity unchanged, and in investing as in the non-cooperative equilibrium

if the other firm has invested. There are several reasons for using this particular grim-

trigger strategy. In real cartel agreements, firms usually agree on quantities proportional

to the capacity owned at the time of the agreement. While the grim-trigger strategy is

the most considered strategy in the literature, some recent studies focus on other equilibria

with renegotiation. However, in this case, the irreversibility of investment prohibits any

renegotiation after the punishment, as the firms cannot reduce their investment (or their

production).

More precisely, the grim-trigger strategy for status quo is defined by:

Îcoll(k) =

 0 if k = k0

Î∗(k) elsewhere
. (12)

The objective of this section is to characterize the set of initial capacities such that the

grim-trigger strategies (12) form a Markovian equilibrium:

Ψ =
{
k0 ∈ R2

+ | Icoll verifies (6) and (7)
}

. (13)

I assume in the following that the initial capacities are sufficiently low for both firms to

invest in the non-cooperative equilibrium (as defined in the previous section). If both capac-

ities are high and no firms invest at the non-cooperative equilibrium, then the agreement for

status quo is obviously an equilibrium, as it coincides with the non-cooperative equilibrium.

11



In that case, there is no real collusion, as firms behave exactly in the same way in both

equilibria. If one of the firms has a capacity higher than the Cournot capacity, given by (9),

and the other firm has a low enough capacity to invest in the non-cooperative equilibrium,

then there is no possibility for a status quo agreement. Indeed, when the largest firm keeps

its capacity constant, the smallest firm’s best response is to invest up to the capacity level

(8). This corresponds to the non-cooperative equilibrium behavior, and for the smallest firm,

the best response to the status quo agreement is to deviate from the collusive agreement.

Assume that firm i deviates from the agreement for status quo by investing in a level

of capacity Id. At the time of the investment decision, its competitor does not know that

firm i is deviating and therefore keeps its initial capacity. When the investment is made, the

opponent observes the deviation and the non-cooperative equilibrium is played out. However,

at this point in time, firm i’s capacity is no longer its initial capacity, but its capacity of

deviation, kid = ki0 + Id. The non-cooperative equilibrium played after the deviation may be

impacted by this evolution of capacity.

The form of the non-cooperative equilibrium implies two properties of the optimal devi-

ation.

If the capacity of deviation is below the Cournot level (kid < kc), then for both firms the

non-cooperative equilibrium is to invest until the Cournot level. In that case, by investing

directly up to the Cournot level, firm i does not change the non-cooperative equilibrium

established after carrying out the deviation, and it increases its profits during the time when

the deviation capacity is installed, but not the punishment capacity. The optimal deviation

should then be higher than the Cournot level. This also implies that the deviating firm i

does not invest after the deviation.

Furthermore, there exists a level of capacity, (kBR)−1 (kj0), such that, if the deviating

capacity is greater than this level of capacity, the punishing firm does not invest after the

deviation. Indeed, due to the irreversibility of investment, the deviating firm is committed to

a capacity sufficiently high to prohibit the other firm from investing at the non-cooperative

equilibrium. If the deviating capacity is greater than this level, then reducing the deviating

capacity does not change the reaction of the punishing firm, but enables greater profits for

the deviating firm.9 The optimal deviation should then be lower than this level of deviation.

9Indeed, when the capacity of firm i is (kBR)
−1

(kj0) and the capacity of firm j is kj0 the non-cooperative
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These features are summarized in the following Lemma.

Lemma 1 The optimal deviation verifies k∗id ∈
[
kc, (kBR)−1 (kj0)

]
.

In the following, I focus on deviations which verify the condition given in Lemma 1, in

order to find the optimal deviation. In that case, the profit of firm i is:

Πi = (1− δτ ) πi(kid, k
j
0)− p+

(
kid − ki0

)
+ δτπi

(
kid, kBR

(
kid
))
. (14)

The first term of the profit is obtained when the deviating firm has installed its capacity,

but before the punishment is implemented. The second term is simply the investment cost

of the deviation. The last term occurs during the rest of game, when firms reach the non-

cooperative equilibrium. It depends on the capacity installed during the deviation. The

deviation therefore has two impacts: it increases the short-run profit and it also reduces the

capacity installed by the competitors in the long-run, during the punishment phase.10

Infinitely short time period

This sub-section focuses on a case where the time period goes to zero (τ → 0). As time

is continuous, the deviation is instantly detected and both the deviation capacity and the

punishment capacity are instantly installed. The deviating firm does not make any profit

before the implementation of its capacity or during the time between the deviation and the

punishment. Indeed, when τ → 0, the deviating firm’s profit becomes:

Πi = πi(k
i
d, kBR

(
kid
)
)− p+

(
kid − ki0

)
. (15)

Therefore, deviating from the collusive equilibrium has no short-run impact. It only influ-

ences the long-run distribution of capacity.

In this limit case, there is a clear parallel between the choice of the optimal deviation

and the Stackelberg game. Due to the irreversibility of investment, when a firm deviates, it

equilibrium that no firm invests. Firm i has then no interest to invest more than (kBR)
−1

(kj0).
10Assumption A implies that the capacity installed in punishment, determined in (8) is decreasing.
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commits to its new level of capacity. When the opponent observes the deviation, it reacts to

this new choice of capacity. After this point, firms maintain their capacity forever. As the

time period goes to zero, firms only make a profit in the long run. The deviating firm is then

in the position of a Stackelberg leader, whereas its opponent, which reacts to the deviation,

behaves as a Stackelberg follower.

Let kis be the Stackelberg capacity, as defined by the first order condition of (15):

∂πi
∂ki

(kis, kBR
(
kis
)
) +

∂kBR
∂ki

(
kis
) ∂πi
∂kj

(kis, kBR
(
kis
)
) = p+. (16)

Lemma 2 describes the optimal deviation.

Lemma 2 When τ → 0, the optimal deviation is to install a capacity:

k̂∗id =

 kis if kj0 ≤ kBR (kis)

(kBR)−1 (kj0) if kj0 > kBR (kis)
. (17)

If the punishing firm starts with a low initial capacity, the punishing firm will invest after

the deviation. Knowing that its opponent will invest after the deviation, the optimal strategy

of the deviating firm is to install the Stackelberg capacity. In such case, the condition for

firm i to accept the collusive agreement is to make more profits with its initial capacity than

if it installs the Stackelberg capacity and its opponent invests to the best response level of

the Stackelberg capacity:

If kj0 ≤ kBR (kis),

πi(k0) ≥ πi(k
i
s, kBR

(
kis
)
)− p+

(
kis − ki0

)
. (18)

When the initial capacity of the punishing firm is sufficiently high, the deviating firm

invests less than the Stackelberg capacity in order to take into account the fact that the

punishing firm is committed by its initial level of capacity. In such case, the punishing firm

does not invest after the deviation. The condition for firm i to accept the collusive agreement

is thus to make more profit with its initial capacity than if it increases its capacity to the

best response level:

If kj0 > kBR (kis),

πi(k0) ≥ πi
(
(kBR)−1 (kj0), k

j
0

)
− p+

(
(kBR)−1 (kj0)− ki0

)
. (19)
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Figure B presents the optimal deviation and the punishment which follows in function

of the initial capacities.

0,0

k t
A

H

k t
B

kIrrk t
A

kIrrk t
B

kC

kC kS

Optimal deviations of firm A 

Punishment 
of firm B 

Figure 2: optimal deviation

The conditions (18) and (19) allow us to determine which firm has the more incentives

to deviate from the collusive agreement.

Lemma 3 When τ → 0, the firm with the most incentives to deviate from the collusive

agreement is the firm with the lowest initial capacity:

If (18) and (19) holds for i and ki0 < kj0, then (18) and (19) holds for firm j.

Assume that both firms are small, so that the deviation involves installing the Stackelberg

capacity, even when the larger firm deviates (ki0 ≤ kBR (kis) for both i = A,B). In such case,
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the total capacity after the deviation is the sum of the leader and the follower capacity of

Stackelberg (kis + kBR (kis)). The price after the deviation is then the same whichever the

deviating firm. In that case, the difference between the initial capacity and the Stackelberg

capacity is greater for the smaller firm than for the larger one. The smaller firm then has

more incentive to deviate, as it gains more capacity. If both firms are large (ki0 ≤ kBR (kis) for

one i) so that the deviation involves prohibiting the other firm from investing, as described

by (19), the price after the deviation is higher when the small firm deviates than when the

larger firm deviates. Indeed, as the marginal profit of investment decreases with the firm’s

capacity, the smaller firm has more incentive to invest for the same total capacity in the

non-cooperative equilibrium. Therefore, to prohibit the other firm from investing after the

deviation, the larger firm has to install a greater capacity than the smaller firm. This price

reduction makes the deviation less profitable for the larger firm than for the smaller one.

The same reasoning applies when one firm is small and behaves as in (18) and the other one

is large and behaves as in (19).

Finally, Lemma 2 and 3 allow us to determine the initial capacities for which there is a

possibility of collusion.

Proposition 2 When τ → 0, the set of initial capacities such that the agreement for status

quo is a Markov perfect equilibrium is:

Ψ =

{
k ∈ R2

+ | (18) and (19) holds for i = arg inf
{A,B}

{ki0}
}

. (20)

Furthermore, let km be the firms’ capacity that maximizes the joint profit,

km = arg max
{
πA(km, km) + πB(km, km)− 2p+km

}
(21)

then, if kM < kIrr(kS), there is a possibility of collusion if and only if the Stackelberg profit

is under half of the joint profit:

πi
(
ks, kBR

(
kis
))
− p+ks ≤

πA(km, km) + πB(km, km)− 2p+km
2

= πi(km, km)− p+km. (22)

The parallel between the optimal deviation and the choice of the Stackelberg leader allows

us to obtain a clear condition for the possibility of collusion. When half of the monopoly
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profit is greater than the Stackelberg leader’s profit, there is a possibility of collusion. Half

of the monopoly profit is the best collusive profit the firms can make and the Stackelberg’s

leader profit is the deviating profit derived from the monopoly capacity.

In the usual theory of collusion, when firms are more patient (i.e. when their discount

rate, δ, increases), the size of the profit at the time of deviation relative to the future profit of

punishment decreases, and the collusion is easier to sustain. When investment is irreversible,

it is possible to differentiate the condition (18) and (19) with respect to the discount rate to

determine its impact on collusion.

Lemma 4 When τ → 0, if the discount rate increases, it becomes harder to sustain collusion:

If δ′ > δ, Ψδ′ ⊂ Ψδ (23)

When firms are more patient, their willingness to invest increases, as they are ready to

pay more in the short run to gain profit in the long run. In the case with infinitesimal

time periods, deviating from the agreement only impacts firms’ long-run profits. Therefore,

when firms are more willing to invest, their incentives to deviate increase. This result differs

from the usual theory. The reason is that the present case, with no time-to-build, focuses

on the long-run profitability of deviation, whereas the usual theory focuses on the short-run

profitability of deviation.

General case

This sub-section generalizes the results of the previous section when the time periods are

positive (τ > 0). In such case the incentive for deviation is a combination of short-run and

long-run effects. Indeed, the deviating firm makes a positive profit during the time between

the installation of the deviation capacity and the installation of the punishing capacity. After

the installation of the punishing capacity, the deviating firm makes its long-run profit as in

the previous sub-section.

17



In order to state the optimal deviation, let kiD(kj0) be the capacity that the deviating firm

wishes to install if its competitor invests after the deviation, as defined by:

(1− δτ ) ∂πi
∂ki

(kiD, k
j
0) + δτ

[
∂πi
∂ki

(kiD, kBR
(
kiD
)
) +

∂kBR
∂ki

(
kiD
) ∂πi
∂kj

(kiD, kBR
(
kiD
)
)

]
= p+. (24)

This optimal capacity of deviation is below the Stackelberg capacity (kD < kS).11 Indeed,

the fact that the deviating firm makes a short-run profit reduces its incentives to invest, as

the capacity which maximizes the short-run profit of deviation is below that which maximizes

the long-run profit. Lemma 5 describes the optimal deviation.

Lemma 5 The optimal deviation is to install a capacity:

k∗id =

 kiD(kj0) if kj0 ≤ kBR
(
kiD
(
kj0
) )

(kBR)−1 (kj0) if kj0 > kBR
(
kiD
(
kj0
) ) . (25)

As in the case with infinitesimal time periods, there are two possible reactions for the

deviating firm. If the initial capacity of the punishing firm is low, the punishing firm will

invest after the deviation. In such case, the optimal deviation is the maximizing one (24),

and firm i accepts the collusive agreement if it makes more profit with its initial capacity

than it does by deviating:

If kj0 ≤ kjBR
(
kiD
(
kj0
) )

,

πi(k0) ≥ (1− δτ ) πi
(
kiD
(
kj0
)
, kj0
)

+ δτπi
(
kiD
(
kj0
)
, kBR

(
kiD
(
kj0
) ))
− p+

(
kiD
(
kj0
)
− ki0

)
.

(26)

When the initial capacity of the punishing firm is sufficiently high, the deviating firm

invests less than the capacity defined by (24) in order to take into account the fact that

the punishing firm is committed by its initial level of capacity and will not invest after

the deviation. Firm i accepts the collusive agreement if it will make more profits is by

maintaining its initial capacity than it will by increasing its capacity to the best response

level:

If kj0 > kjBR
(
kiD
(
kj0
) )

,

πi(k0) ≥ πi
(
(kBR)−1 (kj0), k

j
0

)
− p+

(
(kBR)−1 (kj0)− ki0

)
. (27)

11The proof of this fact is in appendix.
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As previously, the firm with the lowest initial capacity is the one that has the most

incentives to deviate from the status quo agreement.

Lemma 6 The firm with the most incentives to deviate from the collusive agreement is the

one with the lowest initial capacity:

If (26) and (27) holds for i and ki0 < kj0, then (26) and (27) holds for firm j.

Lemma 6 allow us to determine the initial capacities for which there is a possibility of

collusion.

Proposition 3 The set of initial capacities such that the agreement for status quo is a

Markov perfect equilibrium is:

Ψ =

{
k ∈ R2

+ | (26) and (27) holds for i = arg inf
{A,B}

{ki0}
}

. (28)

The condition ensuring that the existence of a possible collusion (meaning that Ψ is not

restricted to the Cournot equilibrium) has no general clear mathematical formula. However,

when condition (22) is valid, collusion is always possible when τ is small enough.

The impact of the discount factor on the possibility of collusion is ambiguous. Indeed,

the two incentives for deviation coexist in the general case. The short-run one, present

in standard collusion models, comes from the additional profit made by the deviating firm

before its competitor implements punishment. The long-run incentive, previously described

in sub-section 3.2, comes from the first mover advantage of the deviating firm due to the

irreversibility of investment, and is a direct result of the irreversibility of capacity investment.

When the discount factor is very low, firms are impatient, and the short run incentive

dominates: an increase of δ augments the possibility of collusion. However, when the discount

rate is high, firms are patient, and the long-run incentive prevails. In such case, an increase

of δ makes the firms more patient, and willing more to invest and deviate from the collusive

agreement in order to obtain a dominant position in the market.
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To illustrate this, let H be the possibility of collusion, as defined by:

H(k0) = πi(k
i
0, k

j
0)−

[
(1− δτ ) πi(kiD, k

j
0)− p+

(
kiD − ki0

)
+ δτπi(k

i
D, kBR

(
kiD
)
)
]

.

When H(k0) ≥ 0 a possibility for collusion exists, i.e. the grim-trigger strategies for status

quo defined by (12) form a Markov perfect equilibrium when H(k0) ≥ 0. Figure 3 presents

the possibility of collusion in function of the discount factor, in the case of linear demand

and quadratic production cost.

0.2 0.4 0.6 0.8 1.0
δ

-0.15

-0.10

-0.05

H (δ )

Figure 3: Possibility of collusion

With parameter values: D(Q) = 1−Q, c(qi) = 0.1 (qi)
2
, p+ = 0.3, τ = 0.1, kA0 = kB0 = 0.15.

4 Conclusion

This work shows that the irreversibility of investment creates a long-run incentive for

the deviation. Indeed, when a firm wishes to deviate from a collusive agreement, it has to
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increase its production capacity. In doing so, it benefits from a short-run increase in profits

before its opponent starts to boost its production as a punishment, but it also commits to this

capacity for the rest of the game, due to the irreversibility of investment. This commitment

reduces its opponent’s incentive to invest in a punishment regime, and permits the deviating

firm to gain a long-run advantage in terms of capacity.

This is consistent with the lysine example, in which investment made by the entry firm,

ADM, during the first period of collusion (1992-1993), lead to the demise of the cartel.

During the ensuing price war, ADM’s increased capacity allowed the firm to increase its

market share at the expense of its competitors. ADM retained its new market share during

the second collusive period that began at the end of 1993.

This work is based two hypotheses, the fact that firms always produce at full capacity,

and that industry starts out below capacity (which can be due to an entry, or positive

demand shock). These opens up to two different directions for future studies. First, firms

can have unused capacity that can be observed by their competitors, and used to enforce

cartel agreements. One promising topic for future research would be to determine how this

unused capacity facilitates collusion and how it affects firms’ investment in capacity. Second,

firms often face uncertain market conditions. Market developments may have an impact on

capacity collusion, both in relation to the preserving a cartel, and to its creation. An industry

dealing with an increase in demand may prefer to collude rather than increase its capacity,

in particular if the demand shock is temporary. New research is required to understand the

link between cartels in capacity and market evolution.

5 Appendix

Proof of Proposition 1:

The pattern of this proof is the following: first it characterizes a firm’s best response,

depending on the inter-temporal profit, then it determines this inter-temporal profit at the

equilibrium, and finally it gives the equilibrium strategies.

Let Ij(k) be the strategy of firm j. The profit of firm Πi is then:

Πi(k) = max
Ii

{
(1− δτ ) πi

(
ki + I i, kj + Ij(k)

)
+ δτΠi

(
ki + I i, kj + Ij(k)

)
− p+I i

}
. (29)
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Let Vi(k) be defined by:

Vi(k) = (1− δτ )πi (k) + δτΠi (k) .

Equation (29) can then be rewritten as:

Πi(k) = max
Ii

{
Vi
(
ki + I i, kj + Ij(k)

)
− p+I i

}
Assuming that Vi is differentiable and concave (in the first variable), the optimal investment

of firm i is thus determined by the implicit equation:

∂Vi
∂ki

(
ki + I i, kj + Ij(k)

)
= p+. (30)

As ∂Vi
∂ki

(., kj + Ij(k)) is decreasing, the best response of firm i is defined by (30) if ∂Vi
∂ki

(ki, kj + Ij(k) ) <

p+ and 0 elsewhere.

Therefore, if both firms follow the best response strategy defined previously, no firms

invest if ∂Vi
∂ki

(ki, kj) ≥ p+ and
∂Vj
∂ki

(ki, kj) ≥ p+ and, in that case, (ki, kj) is a steady point (as

investment is irreversible and there is no decrease in capacities, a steady point is defined as a

point where no firms invest at the equilibrium). By (29), the inter-temporal profit function

at a steady state is given by:

Πi

(
ki, kj

)
= πi

(
ki, kj

)
. (31)

By (30), firms reach a steady point after their first investment is made. This allow us to

rewrite (29), the profit of firm i for a given Ij(k):

Πi = (1− δτ )πi
(
ki + I i, kj + Ij(k)

)
+ δτπi

(
ki + I i, kj + Ij(k)

)
− p+I i, (32)

and gives the equilibrium strategies of the firms: do not invest if

∂πi
∂ki

(
ki, kj + Ij(k)

)
≥ p+, (33)

and, if not, invest at level I defined by the implicit equation:

∂πi
∂ki

(
ki + I, kj + Ij(k)

)
= p+. (34)

Note that the above reasoning implies that there is no other Markovian equilibrium such

that the inter-temporal profit function (with equilibrium strategies) is differentiable and

concave. However, other Markovian equilibria may exists with less regular inter-temporal
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profits (section 3 shows an example of strategies that are not continuous in the state variables,

and that create jumps in the profit function). �

Lemma 1 is shown in the text. The results of section 3.2, when there is no time-to-build,

are the limit case of the results of section 3.3, when there is time-to-build, and therefore are

shown after the results of section 3.3.

Proof of footnote number 8:

By assumption A, π is concave, and ∂πi
∂ki

< 0. In particular:

∂πi
∂ki

(kD, k0) < p+. (35)

Therefore:

δτp+ < p+ − (1− δτ ) ∂πi
∂ki

(kD, k0). (36)

Equation (24) implies that

p+ − (1− δτ ) ∂πi
∂ki

(kD, k0) = δτ
[
∂πi
∂ki

(kD, kBR (kD)) +
∂kBR
∂ki

(kD)
∂πi
∂kj

(kD, kBR (kD))

]
, (37)

and equation (16) implies that

δτp+ = δτ
[
∂πi
∂ki

(ks, kBR (ks)) +
∂kBR
∂ki

(ks)
∂πi
∂kj

(ks, kBR (ks))

]
. (38)

Then,

∂πi
∂ki

(ks, kBR (ks))+
∂kBR
∂ki

(ks)
∂πi
∂kj

(ks, kBR (ks)) <
∂πi
∂ki

(kD, kBR (kD))+
∂kBR
∂ki

(kD)
∂πi
∂kj

(kD, kBR (kD)) ,

(39)

and, as ∂πi
∂ki

(., kBR (.)) + ∂kBR

∂ki
(.) ∂πi

∂kj
(., kBR (.)) is decreasing by assumption H and by (8),

ks > kD.

�

Lemma 5 is the result of the maximization of (14) under the constraint kid ≤ (kBR)−1 (kj0),

coming from Lemma 1.

Proof of Lemma 6:
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Let α(x) be defined by

α(x) =

 (1− δτ )πi(kiD, k
j
0)− p+ (kiD − ki0) + δτπi (k

i
D, kBR (kiD)) if x ≤ kBR (kiD (x))

πi
(
(kBR)−1 (x), x

)
− p+ (kBR)−1 (x) if x > kBR (kiD (x))

.

(40)

As the deviation is the optimal one, the derivative of α is (see equation (24) and (8) ):

α′(x) =


(1− δτ ) kiD(x)P ′(kiD(x) + x)

ln(1/δ)
if x ≤ kBR (kiD (x))

P ′
((
kjBR

)−1
(x) + x

) (
kjBR

)−1
(x)

ln(1/δ)
if x > kBR (kiD (x))

. (41)

With this notation, firm i agrees to collude if and only if:

πi(k0)− p+ki0 − α(kj0) ≥ 0 (42)

Let h be a function defined by:

h(x) =
P (T )x− c(x)

ln(1/δ)
− p+x+ α(x), (43)

where T is a constant which verifies T < kiD(x)+x if x ≤ kBR (kiD∗ (x)) and T <
(
kjBR

)−1
(x)+

x if x > kBR (kiD (x)). Then, the derivative of h is:

h′(x) =


P (T ) + (1− δτ ) kiD∗(x)P ′(kiD(x) + x)− c′(x)

ln(1/δ)
− p+ if x ≤ kBR (kiD (x))

P (T ) + P ′
(
(kBR)−1 (x) + x

)
(kBR)−1 (x)− c′(x)

ln(1/δ)
− p+ if x > kBR (kiD (x))

.

(44)

As P (T ) > P (kiD(x)+x) if x ≤ kBR (kiD (x)) and P (T ) > (kBR)−1 (x)+x if x > kBR (kiD (x)),

the derivative of h is positive. Then, if kj0 > ki0,

P (T )kj0 − c(k
j
0)

ln(1/δ)
− p+kj0 + α(kj0) ≥

P (T )ki0 − c(ki0)
ln(1/δ)

− p+ki0 + α(ki0) (45)

By assuming that T = ki0 + kj0, (45) can be rewritten:

πj(k0)− p+kj0 − α(ki0) ≥ πi(k0)− p+ki0 − α(kj0). (46)

Therefore, if kj0 > ki0, and firm i agrees for collusion, then firm j also agrees, as:

πi(k0)− p+ki0 − α(kj0) ≥ 0⇒ πj(k0)− p+kj0 − α(ki0). (47)
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�

Proposition 3 comes from the combination of Lemmas 5 and 6. In section 3.2, Lemma 2

is a corollary of Lemma 5 and Lemma 3 is a corollary of Lemma 6.

Proof of Proposition 2:

The first part of proposition 2 comes from the combination of Lemmas 2 and 3.

To state the second part of proposition 2, note that the incentive for collusion of firm i

(ICcoll) can be written:

ICcoll =

 πi(k0)− p+ki0 − (πi(ks, kBR (ks))− p+kis ) if kj0 ≤ kIrr (ks)

πi(k0)− p+ki0 −
(
πi
(
(kBR)−1 (kj0), k

j
0

)
− p+k−1BR(kj0)

)
if kj0 > kBR (ks)

.

For a given initial state, the collusive agreement for the status quo is a Markovian equilibrium

if, and only if, this incentive for collusion is positive. To show wether or not there is a

possibility for collusion, I determine the initial state maximizing the incentive for collusion

and study the sign of ICcoll in this particular state.

As the smallest firm has a greater incentive to deviate than its opponent, the initial state

maximizing ICcoll is symmetric. In the following, k0 designs alternatively the capacity of one

of the firms or the vector of capacity, (k0, k0).

First, assume that k0 > kIrr (kS). Then, the incentive to collude is:

ICcoll = πi(k0, k0)− p+k0 −
(
πi
(
(kBR)−1 (k0) , k0

)
− p+ (kBR)−1 (k0)

)
. (48)

The second term, πi
(
(kBR)−1 (k0), k0

)
− p+ (kBR)−1 (k0) is the value of the maximization of

πi(k
i
s, kBR (kis)) − p+kis in the boundary (kBR)−1 (k0). Therefore, its differential is positive

(as k−1BR(k0) < kS). The first term is maximized in km < kBR (kiS), as the profit is symmetric

and:

km = arg max
{
πA(km, km) + πB(km, km)− 2p+km

}
= arg max

{
πi(km, km)− p+km

}
. (49)

Therefore, the differential of πi(k0, k0)−p+k0 is negative, as for the differential of ICcoll, and

the initial state maximizing ICcoll should be below kBR (ks).

Now, assume that k0 < kBR (ks). Then, the incentive to collude is:

ICcoll = πi(k0)− p+ki0 −
(
πi(ks, kBR (ks))− p+kis

)
,
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which is maximized in km.

�

Proof of lemma 4:

The pattern of proof is to fix a vector of initial capacity such that firm i has an incentive

to deviate, and to show that firm i has an incentive to deviate for a higher δ. The proof is

decomposed into two parts, depending whether kj0 ≤ kBR (kis) or not.

Before doing so, note that the best response of capacity, kBR(x), is an increasing function

function of the discount rate, δ (for all x ∈ R+). Indeed, the implicit equation defining kBR,

(8), can be rewritten:

P ′ (x+ kBR (x) ) kBR (x) + P (x+ kBR (x) )− c′ (kBR (x) ) = ln

(
1

δ

)
p+. (50)

This gives, by differentiation:

∂kBR (x)

∂δ
= −1

δ

p+

[P ′′ (x+ kBR (x) ) kBR (x) + 2P ′ (x+ kBR (x) )− c′′ (kBR (x) )]
. (51)

By assumption A, the second derivative of the firm’s payoff is negative, and therefore
∂kBR(x)

∂δ
> 0, meaning that a more patient firm invest a higher quantity.

Assume that kj0 ≤ kBR (kis). Then, firm i has an incentive to deviate if and only if:

πi(k0)− p+ki0 < πi(ks, kBR (ks))− p+kis, (52)

which is equivalent to

P
(
ki0 + k−i0

)
ki0 − c(ki0) < P (ks + kBR (ks) ) ki0 − c(kis)− ln

(
1

δ

)
p+
(
ks − ki0

)
. (53)

By definition of ks this can be rewritten,

P
(
ki0 + k−i0

)
ki0 − c(ki0) < max

x

{
P (x+ kBR (x) )x− c(x)− ln

(
1

δ

)
p+
(
x− ki0

) }
. (54)

The first term of the inequality does not depend on δ. To show that an increase of δ augments

the incentive to deviate, it is enough to show that the derivative of the second term is positive.

Let V (δ) = maxx∈R+

{
P (x+ kBR (x) )x− c(x)− ln

(
1
δ

)
p+ (x− ki0)

}
. Then, the envelope

theorem implies that:

V ′(δ) =
∂kBR (kS)

∂δ
P ′ (ks + kBR (ks) ) ks +

1

δ
p+
(
ks − ki0

)
, (55)
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by using (54),

V ′(δ) =
p+

δ

((
ks − ki0

)
− P ′ (ks + kBR (ks) ) ks
P ′′ (ks + kBR (ks) ) kBR (ks) + 2P ′ (ks + kBR (ks) )− c′′ (kBR (ks) )

)
,

(56)

thus

V ′(δ) =
p+

δ
ks

(
P ′′ (ks + kBR (ks) ) kBR (ks) + P ′ (ks + kBR (ks) )− c′′ (kBR (ks) )

P ′′ (ks + kBR (ks) ) kBR (ks) + 2P ′ (ks + kBR (ks) )− c′′ (kBR (ks) )

)
− p+

δ
ki0.

(57)

As P ′ < 0,

P ′′ (ks + kBR (ks) ) kBR (ks) + P ′ (ks + kBR (ks) )− c′′ (kBR (ks) )

P ′′ (ks + kBR (ks) ) kBR (ks) + 2P ′ (ks + kBR (ks) )− c′′ (kBR (ks) )
> 1, (58)

and V ′(δ) > 0 as ks > ki0 by assumption (ki0 < kc).

Assume now that kj0 > kBR (kis). To simplify the notation, let k−1BR = (kBR)−1 (kj0). Then,

firm i has an incentive to deviate if and only if:

P
(
ki0 + k−i0

)
ki0 − c(ki0) < P

(
k−1BR + kj0)

)
k−1BR − c

(
k−1BR

)
− ln

(
1

δ

)
p+
(
k−1BR − k

i
0

)
. (59)

Let V (δ) = P
(
k−1BR + kj0

)
k−1BR−c

(
k−1BR

)
− ln

(
1
δ

)
p+
(
k−1BR − ki0

)
. The derivative of the second

term is given by:

V ′(δ) =
∂k−1BR
∂δ

(
P ′
(
k−1BR + kj0

)
k−1BR + P

(
k−1BR + kj0

)
− c′

(
k−1BR

)
− ln

(
1

δ

)
p+
)

+
1

δ
p+
(
k−1BR − k

i
0

)
.

(60)

As k−1BR < ks, P
′ (k−1BR + kj0

)
k−1BR + P

(
k−1BR + kj0

)
− c′

(
k−1BR

)
− ln

(
1
δ

)
p+ is positive. Further-

more, as kBR increases with δ, k−1BR also increases with δ and thus V ′(δ) > 0.

�
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