X-ray micro-computed tomography (μCT) for non-destructive characterisation of food microstructure

Letitia Schoeman a, Paul Williams a, Anton du Plessis b, Marena Manley a,⁎

a Department of Food Science, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
b CT Scanner, Central Analytical Facility, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa

Abstract

Background: Food microstructure can be visualised by a wide range of microscopic techniques, however these methods are usually destructive and require sample preparation. X-ray micro-computed tomography (μCT) provides an alternative as it is non-invasive, non-destructive and requires no sample preparation. It characterises structures three-dimensionally, allowing evaluation of microstructural changes at resolutions as high as a few hundred nanometres. After the discovery of X-rays in 1895, X-ray computed tomography (CT) was developed and introduced into clinical practices in the 1970s. The first X-ray μCT food application, to detect the maturity of green tomatoes, followed in 1991.

Scope and approach: This review aims to provide an overview of the basic principles of X-ray μCT, the different systems, image processing and analysis as well as image texture analysis. Food applications are highlighted and the review concludes with future trends of X-ray μCT.

Key findings and conclusions: The controlled production and stability of microstructure is of great interest to the food industry. Both laboratory μCT and synchrotron systems are becoming more common and thus will lead to imaging in three dimensions at a micron scale playing a much bigger role in future food studies. Limitations include operator dependency, time and cost constraints and imaging artefacts. Technological and computational progress, however, encourages the growth of this technique in food science.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Food microstructure influences the physical, sensory and textural properties of products. This requires better evaluation and understanding of the structural organisation of food in order to produce products with desired organoleptic and physical characteristics. Also, food science research often demands knowledge of the true three-dimensional (3D) microstructure. Food microstructure can be defined as the spatial organisation of structural components of food and their interactions (Herremans et al., 2013a). Current techniques used to obtain information on food microstructure are mostly invasive and entail sample preparation (e.g. light and electron microscopy) or are limited to specific applications (e.g. magnetic resonance imaging (MRI) and atomic force microscopy (AFM)) (Frisullo, Barnabà, Navarini, & Del Nobile, 2012). X-ray micro-computed tomography (μCT) is an innovative radiographic imaging technique that enables non-destructive and non-invasive 3D imaging, at resolutions higher than 1 μm, and analysis aimed at the internal examination of the structural arrangement of products (Landis & Keane, 2010). The same sample can thus be scanned numerous times under different conditions. This is especially of value in food research where information on microstructural changes over time is required. X-ray μCT also enables scanning of the entire sample due to its large field-of-view without any sample preparation (Léonard, Blacher, Nimmol, & Devahastin, 2008). X-ray μCT enables samples to be studied in their natural state at atmospheric temperature and pressure. Besides being used in the millimetre to micron (X-ray μCT) resolution range, recently sub-micrometre or nanometre (X-ray nano-CT) pixel resolution has become possible (Herremans et al., 2011). X-ray CT thus enables 3D microstructural investigation of samples in a near-native state and at unprecedented resolution.

X-ray CT has numerous applications and a number of reviews have been published to demonstrate the versatility of this technique in fields such as, geosciences (Crudu & Boone, 2013), material science (Landis & Keane, 2010; Maire & Withers, 2014) and...
2. Fundamental principles of X-ray CT

2.1. Background

X-ray radiation was first discovered in 1895 by Wilhelm Conrad Röntgen (Kotwalilwale et al., 2014) with X-ray computed tomography (CT) introduced into clinical practices in 1972 with a typical resolution of 300 μm (Kalender, 2011). Further development of instrumentation and improvement in computing power led to true 3D imaging of internal structures rapidly extending to other fields.

X-ray CT originates from Computerised Axial Tomography (CAT or CT) scans (Landis & Keane, 2010). The South African born American physicist, Alan M. Cormack was awarded the Nobel Prize for Physiology or Medicine in 1979 for the development of CAT scanning (De Beer, 2005). CT scanning is an extension of projection radiography capable of producing 2D images of a sample’s internal structure. The limitation of radiography is that features can only be studied within the 2D plane, resulting in a loss of information and consequently the misinterpretation of an image. X-ray CT or μCT overcomes this drawback by linking data from a sequence of 2D absorption images that is recorded by rotating a sample around an axis (Landis & Keane, 2010). Mathematical principles can then be used to reconstruct the series of 2D radiographs into 3D digital images. Cormack, in conjunction with Godfrey Hounsfield, first employed the mathematical transformation algorithms generated by John Radon in 1907 to create 3D reconstructed images for the medical examination of patients (De Beer, 2005).

The basic principles of X-ray CT imaging are thus absorption physics (related to 2D projection images) and reconstruction mathematics (relevant to the generation of a 3D volume from a series of 2D images) (Landis & Keane, 2010). For greater depth and breadth on the principles and the technique, the reader is referred to more comprehensive work (Kalender, 2011; Maire & Withers, 2014).

2.2. Experimental setup and image acquisition

X-ray CT evaluates the internal structure of a sample by means of a X-ray source and a detector in order to obtain information from a projected slice (Kotwalilwale et al., 2014). The principle is based on image contrast that is produced by variations in the X-ray attenuation that includes absorption and scattering (Lim & Barigou, 2004). When an X-ray beam passes through a sample it is attenuated. The differences in attenuation are attributable to density and compositional differences within a sample. Thus the transmission level of the X-ray is determined by the mass as well as the absorption coefficient of a sample.

During image acquisition an X-ray beam, which is collimated, is directed toward a sample, the detector measures the remnant attenuated radiation and the response is transferred to a computer. This radiation type has the ability to penetrate a sample in varying degrees (Chudde & Boone, 2013). Before scanning, instrumental conditions such as beam energy and current, sample-to-detector distance and exposure time, must be optimised.

During scanning a sample is rotated on a translation stage while illuminated with X-rays (Baker et al., 2012). The X-rays pass through the object in many different directions and along different pathways to create an image illustrating variation in density at numerous points in a 2D slice (Lim & Barigou, 2004). As the sample rotates, a series of 2D radiographs or projection images are acquired (Frisullo, Laverse, Marino, & Del Nobile, 2009). The total angle of rotation depends on the geometry of the beam and the sample, but is typically 180° in the case of a parallel beam (e.g. synchrotron) or 360° when a cone-beam is used (e.g. laboratory system) (Baker et al., 2012). Fig. 1 schematically demonstrates the acquisition principle. The detector records the object that is transversed by the conical X-ray beam. The ratio of distance from the tube to the detector and to the sample determines the magnification. Data from numerous X-ray radiographs are processed with a computer to reconstruct a 3D volume (Fig. 2).

Tomograms, which are the 3D representation of a sample’s internal structure and composition, can be extracted from these 3D volumes. This image is comprised of volume elements (voxels) that represent the X-ray absorption at a specific point (Landis & Keane, 2010) (Fig. 2(a)). The images can be presented as virtual slices at various depths and in various directions or the sample can be viewed as a whole. Dedicated software packages enable manipulation and analysis of the data as well as reconstruction of cross-sections along any orientation. Image contrast is due to differences in X-ray absorption and is caused by density and compositional variation in the sample. It is the association between X-ray absorption and object density that enables the 3D internal structure to be visualised (Landis & Keane, 2010). Thus, the images obtained could be considered a map of the X-ray spatial distribution, where the brighter regions correspond with a higher density (Frisullo et al., 2009).

Different types of reconstruction algorithms have been developed which can be divided into direct and iterative approaches (Landis & Keane, 2010). Direct methods are most often used and include Filtered Back Projection (FBP) and Direct Fourier Inversion (DFI) (Landis & Keane, 2010). Due to the fact that reconstruction is such a computational intensive procedure and the high commercial value of a rapid reconstruction algorithm, these algorithms are usually patented and not freely available (Landis & Keane, 2010).

3. X-ray CT systems

The earliest CT scanners made use of a linear array of photodetectors which resulted in image acquisition and reconstruction occurring slice-by-slice (fan beam configuration). Subsequent
applications of 2D detectors enabled faster scan times through the acquisition of 2D projection images (cone beam configuration) (Fig. 1) (Landis & Keane, 2010). For these two beam configurations the spot size of the X-ray source influences the image quality, where a smaller spot size leads to less blurring and thus a more accurate image (Landis & Keane, 2010). The development of high resolution digital detectors and micro-focus sources, in recent years, enabled the construction of tomographic systems that have spatial resolutions down to 0.7 μm (Baker et al., 2012).

During image acquisition an X-ray beam, produced by the X-ray tube, transverses through the sample after which it is recorded by the detector; usually an X-ray CCD (charged-coupled-device) camera where an enlarged radiograph (projection) is produced (Lim & Barigou, 2004). The focus of the tube limits the spatial resolution while the actual resolution is dependent on the magnification and object size (Lim & Barigou, 2004). The spatial resolution can be varied by altering the distance of the sample between the source and the detector. This varies the resolution from a few millimetres down to one micron and the acquisition time usually ranges from 20 to 60 min. Time resolution thus remains a concern for most imaging methods; the higher the spatial resolution the longer the image acquisition time (Turbin-Orger et al., 2015). Optimum resolution also depends on sample size, e.g. a 100 mm sample will have a resolution of 100 μm whereas a 10 mm sample will have a resolution of 10 μm (i.e. samples size/spatial resolution ratio of 10³).

A noteworthy advance in CT imaging was the use of synchrotron radiation, which led to major enhancements (Landis & Keane,
The high flux of the X-ray beam, high-speed detectors and the rapid reconstruction algorithms of this system, enable 3D images to be created at speeds that nearly approaches real-time (Landis & Keane, 2010). Modern synchrotron X-ray μCT systems are known for its improved image quality and reduction in data collection time, in contrast to traditional systems (Baker et al., 2012). This is because of the X-ray beam features: the monochromaticity, beam geometry and the high spatial coherence and high intensity (Baker et al., 2012). Due to the much higher resolution of synchrotron X-ray images, compared to those of conventional X-rays, it can more effectively be used to reveal fine details of also soft tissue. In addition, the fast acquisition times enables real-time analysis.

Because of these different properties and imaging features, a synchrotron system is a good tool for investigating food applications. Such systems have been used for the study of bread (Babin et al., 2006), cereal products (Guessasma & Hedjazi, 2012) and pome fruits (Mebatsion et al., 2009). Modern laboratory setups, based on cone-beam geometry, also have the ability to generate high-resolution images and phase-contrast properties but are limited compared to synchrotron imaging (Baker et al., 2012). Synchrotron CT is usually restricted to very small samples, ranging from 5 to 10 mm (Landis & Keane, 2010).

A newer, faster technique exists with great potential for fast in-line imaging (Donis-González, Guyer, Pease, & Barthel, 2014b). The ultrafast Rossendorf fast electron beam X-ray tomography (ROFEX) scanner relies on an electron beam gun to generate an electron beam, which is focussed onto an X-ray production target. An electromagnetic deflection system allows the X-ray beam to be swept across the target, consequently producing X-rays from the moving focal spot. In this way radiation moves through a sample and a detector captures the radiation intensity signals. Images can be captured at a rate of up to 7000 frames s⁻¹. ROFEX CT technology can easily be applied in-line to automatically sort agricultural products, due to its rapid scanning capabilities.

Both modern and laboratory CT systems provide high quality images. Thus, there is no ideal setup for every sample type and therefore a compromise should be found to obtain maximum information (Baker et al., 2012). The convenience of conventional laboratory systems will lead to increased use, but there will always be a gap for the unique characteristics of synchrotron sources (Landis & Keane, 2010).

4. Image processing and analysis

Image processing and analysis is required to visualise CT data and to extract suitable information from the image. For microstructural analysis information from the sample volume, density, porosity, object surface to volume ratio, particle size and sample thickness can be obtained. X-ray CT and image analysis are non-destructive tools capable of scanning a whole sample to provide information on pore volume and size distributions and density variations (Léonard et al., 2008). A typical image processing and analysis procedure, when e.g. a maize kernel would be imaged and analysed, is schematically illustrated in Fig. 3.

4.1. Image processing and segmentation

Image reconstruction maps are estimates of the attenuation coefficients and are dependent on the density variation in a sample. During image processing the images are initially smoothed using filters (e.g. Gaussian or Median) to reduce random noise. This step is followed by segmentation where the volume is partitioned into voxel groups of each region-of-interest (ROI) in the sample (Baker et al., 2012). Thus the grey scale slices are transformed into a binary layout that consists only of solid (black) and void (white) pixels (Chawanji, Baldwin, Brisson, & Webster, 2012). The purpose of using ROIs is to separate a volume data set into individual parts, allowing analyses to be restricted to specific areas of a data set. In Fig. 3, 3D reconstructed X-ray μCT images of a maize kernel and its selected ROIs, i.e. cavities, floury endosperm and germ are illustrated.

Segmentation is usually done using thresholding techniques, i.e. (1) selecting a global threshold that is relevant to all the voxels; (2) locally adaptive thresholds; (3) region-growing techniques; and (4) clustering by iterative techniques (Baker et al., 2012). Voxels containing grey values lower or higher than this threshold value are regarded as background or sample material, respectively. It is essential to eliminate errors and unwanted information before starting with analysis. Pre-processing is usually done before image analysis to reduce noise and to correct detector defects. Correction steps usually applied include filtering or smoothing and beam-hardening corrections to suppress random noise and beam-hardening artefacts, respectively (Frisullo et al., 2009). Filtering is also applied to eliminate artefacts, to increase the visibility of different phases and to enhance the edges of a sample (Baker et al., 2012). After segmentation, a cleaning step is typically applied to remove small quantities of pixels that are considered artefacts due to the partial volume effect (Baker et al., 2012). This effect is the result of one pixel containing numerous phases. The cleaning methods are either topological (based on sample connectivity) or morphological (erosion and dilation tools) (Baker et al., 2012).

4.2. Image analysis

Image analysis is used to qualitatively and quantitatively extract visual information and morphometric parameters to characterise the microstructure of a product (Herremans et al., 2013b). The objective of image analysis is to describe an image on the basis of information that could be extracted from the images or image sequences. Analysing an image in its original form is very time-consuming because of the immense size, therefore it is often reduced to smaller selected ROIs (Jayas, Paliwal, & Visen, 2000). When performing quantitative analysis, representativeness should be taken into consideration (Ramirez, Young, James, & Aguiler, 2010). It is thus important that a representative volume element (RVE) is obtained from the sample or ROI. A RVE is a heterogeneous material volume, which is large enough to be statistically representative of the entire sample or ROI. It must therefore include all microstructural variances (e.g. voids and inclusions) present in the sample. A sample (or ROI) with a wide data spread and large structural elements will have a larger RVE than a sample with a narrow distribution and smaller structural features (Ramirez et al., 2010). To ensure representativeness, each ROI should thus be a RVE.

The internal structure of various products can be studied and the distribution of regions varying in density can be visualised through virtual slicing of the 3D rendered volume (Baker et al., 2012). This is only possible if the X-ray attenuation of the ROIs is significantly different to provide adequate contrast. A benefit of X-ray μCT is that image analyses is not restricted to one individual slice at a time, but covers the volume in all three dimensions. Volume data contains an incessant set of voxels that are organised in a 3D grid structure. Voxels are volumetric pixels and thus the 3D equivalent of pixels. The x and y axis represents the horizontal and vertical pixel coordinates (2D), whereas the z axis characterises the 3D spatial dimension. Each voxel signifies a particular area of the sample where the grey value offers information on the density properties in this region. The information from several 2D slices can be merged to create a 3D image that allows volumetric observations and measurements of the 3D microstructure. In contrast to
conventional microscopy techniques, X-ray μCT provides both 2D and 3D images of the whole sample and the internal ROIs (Lim & Barigou, 2004).

4.3. 3D and 2D interpretation and visualisation of X-ray CT images

A 3D map of X-ray absorption can be obtained from the projection images (Landis & Keane, 2010). Different features can be identified from these images due to the variation in absorption of different materials (Landis & Keane, 2010). Three-dimensional CT maps can be viewed in various planes. Fig. 4 illustrates this approach with a 2D tomogram of a maize kernel. The brightness in the images is correlated to the X-ray absorption, where the brighter regions correspond to a higher absorption (higher grey value) and the dark areas correlate to a lower absorption (lower grey value). From the grey value histogram the lower grey values corresponding to surrounding air and internal void space and higher values corresponding to solid material can be identified. This is valuable for...
phase analysis and is often used to segment an image into different ROIs. A grey value histogram for a maize kernel has separate peaks each corresponding to a different phase i.e. solid or air (Fig. 3). This tool enables segmentation to be done based on thresholding. A threshold is selected where all the pixels lower than the threshold are equal to zero (black) and those larger are equal to one (white) (Landis & Keane, 2010).

4.4. 2D vs. 3D analysis

Qualitative assessment of spatial relationships can be performed effectively with 3D renderings (Landis & Keane, 2010). The data acquired from image analysis is a 3D image of a scanned sample comprised of numerous slices. Each slice has a certain number of voxels and each voxel can be related to a Hounsfield Unit (HU) or CT number (Furnols, Teran, & Gispert, 2009). The HU is regarded as the average attenuation in the corresponding section in the sample on a Hounsfield scale (Furnols et al., 2009). The high resolution of CT and the intrinsic contrast, allows differentiation of material densities. The image intensity, expressed in HU, represents the attenuation capabilities of a sample (Donis-González et al., 2014b). Thus, differences in the physical density are observed as changes in the CT number. Low-density objects (e.g. air) have a low HU (~1000) and high-density samples (e.g. solid material) a high HU (up to 3000 HU) (Donis-González et al., 2014b). Water has an attenuation of 0 HU and air a value of -1000 HU. Changes in the HU-values between different ROIs are highly correlated with deviations in sample density, thus X-ray CT is sensitive enough to enable accurate quantification of internal density deviations.

Much research in food science demands an understanding of the true 3D morphology to investigate the internal structure of a food product. A 3D approach enables essential and reliable information on microstructure and spatial distribution to be obtained, and it provides insight into the overall structure and morphology of a sample. A 3D model of a sample can be rendered from the reconstructed 2D images. The model can be sliced in any direction and at any depth to enable visualisation of the internal structure. This makes X-ray CT ideal for non-invasive imaging of the internal features of food, especially foods with a delicate structure, giving X-ray CT a leading edge over other methods (Lim & Barigou, 2004). Software packages enable analysis of images and 3D visualisation with the ability to rotate and cut the sample on a computer screen (Lim & Barigou, 2004). Numerous parameters can be obtained from a 3D model such as air volume, surface-to-volume ratio, connectivity, cell wall thickness and degree of anisotropy (Lim & Barigou, 2004). The section on quantitative X-ray CT data analysis will further expand on this topic.

In 2D analysis the information extracted is usually limited. Considering the 2D slice images in Fig. 4, a multiphase composition can be observed as the maize kernels are made up of a germ, floury
(soft) and vitreous (hard) endosperm and air space. These components can be distinguished owing to the difference in X-ray absorption. This difference manifests itself through the variation in the grey scale intensities and therefore it appears visually as distinct phases. From reconstructed 2D images density differences can be visualised and qualitative information can be obtained. Two-dimensional images are not always fully representative of the true 3D structures, for example where the shapes and sizes of vesicles or pores in a sample is reliant on the location of the 2D section (Baker et al., 2012).

With 2D X-ray imaging only one image is acquired per sample, in contrast to CT where a transverse 2D image (slice) is reconstructed making use of information from more than one 2D projection image obtained at various angles. Thus, 2D X-ray μCT images are capable of demonstrating variation in the size and geometry of certain features such as pores or cavities. The geometry of individual components in a food structure can thus be quantified by size, shape, orientation and position. More information can be provided from a series of CT slices of the same sample than from modern microscopy procedures (e.g. SEM) (Lim & Barigou, 2004). With 3D analysis ROIs can be selected, the sample can be viewed from any arbitrary angle and it can be cut and sliced to examine the 2D sections in any orientation.

4.5. 3D modelling

As a result of increased computing power, μCT data can also be used to model the microstructure of materials, perform numerical simulations and to predict mechanical properties. The microstructure of food is a 3D description of the morphology, where the quantification of a sample’s microstructure begins with a geometric model. A 3D model of the microstructure of a product can be built and image analysis techniques can be used to attain quantitative data on a number of properties such e.g. cell wall-thickness, spatial size distribution, voidage, connectivity and degree of anisotropy (Lim & Barigou, 2004). The development of different finite element (FE) methods, which are numerical methods capable of predicting material properties, has been demonstrated for composite materials (Maire et al., 2003). More recently it has been applied to food science for the mechanical modelling of cereal products in order to simulate the mechanical test (Guessasma et al., 2011).

X-ray CT can simulate food samples and create models by combining object measurements with the 3D microstructure (Baker et al., 2012). As a result of the strong contrast between the matter within the sample and the voids, X-ray tomography is capable of providing 3D images of the structure of porous foods (Lim & Barigou, 2004). Even though the application of X-ray CT 3D simulations in food science is in its early stages, tomographic imaging as a foundation for modelling structures has become commonplace. In a novel method by Mebatsion et al. (2009) 3D microstructural modelling of pome fruit tissue was performed using synchrotron radiation. Herremans et al. (2014b) made use of multiscale modelling to understand the changes in gas concentrations, respiration and fermentation rates in apples during the development of a disorder.

A review on multiscale modelling explains the underlying physical and computational concepts and provides an overview of the applications in food engineering (Ho et al., 2013). Modelling the microstructural evolution and fracture of brittle confectionery wafer has been studied in a recent publication which combined X-ray μCT and FE methods (Mohammed, Charalambides, Williams, & Rasburn, 2014). This study demonstrated that an FE model can predict the product properties with a high level of accuracy in order to optimise industrial processes. The most accurate way of accounting for the structure when modelling cellular samples is to use the 3D information obtained by X-ray μCT to develop a FE model of the real microstructure (Maire et al., 2003). A drawback of using FE computations, obtained from X-ray μCT, is that these computations are both time- and memory-consuming (Mohammed et al., 2014). It is always aimed to find a compromise between computing time and the accuracy of results.

5. Information provided by X-ray μCT: qualitative and quantitative

A range of commercial and open source software is available for extracting qualitative and quantitative information from a data set (Landis & Keane, 2010). Furthermore, animations illustrating evolutionary processes add value to the investigations in a manner, not possible with 2D analyses. Initially, very few studies have attempted to study food microstructure in an objective manner, since researchers often just report a few cross-sectional images in combination with a qualitative discussion of the microstructure, without investigating the quantitative measurement of key properties. Studies have shown that X-ray μCT has been established as an accurate method for the visualisation of the microstructure of materials with pixel sizes close to, and below 1 μm (Van Dalen, Nootenboom, & Van Vliet, 2007; Verbelen et al., 2008). In favourable conditions, X-ray CT delivers unparalleled data with a great level of detail that is not easily matched by any other technique (Baker et al., 2012). Even though 2D slice images provides qualitative and some quantitative value, it is the digital nature and quantitative possibilities of 3D volumes that is the most compelling characteristic of tomographic data (Landis & Keane, 2010).

5.1. Qualitative X-ray CT data analysis

Qualitative analysis is essential to distinguish between diverse classes of a commodity or to detect anatomical and physiological changes. Furthermore, the cell structure of products can be observed giving an indication of the connectivity between cells. 3D rendered images enable the visualisation of the morphology and microstructure such as the pore shape, size and distribution. Qualitative data analysis offers a powerful tool for improving the understanding of sample structure relationships and the spatial distribution throughout the sample. Qualitative 3D modelling is possible as a result of the added spatial dimension. CT images illustrate similarity in samples through the grey values; similar grey values correspond to similar densities.

5.2. Quantitative X-ray CT data analysis

Besides 3D visualisation of the reconstructed volume through 3D rendering procedures, image processing also enables the quantitative analysis of data volumes (Baker et al., 2012). Various microstructural parameters, i.e. size distribution of void cells, wall thickness, volume fractions, porosity, dimensions, and connectivity along with density information can be obtained from data sets. In food science, the geometry and organisation of structural components i.e. ice crystals, pores, fractures and areas of internal disorders can be examined using X-ray μCT.

Over the past decade software for morphological quantitative tomographic data sets has significantly advanced and commercially available software is the result of industry demand (e.g. Avizo-VSG, VGStudio Max, ImageJ and MAVI-Fraunhofer ITWM) and several research groups have developed their own toolboxes for IDL®.
Once a segmented volume, with the various ROIs, has been defined measurements can be performed. For example, the number of bubbles, the bubble volume and size can be determined in an aerated chocolate (Haedelt, Beckett, & Niranjan, 2007). The quantification of structural parameters enables the objective relationship between microstructure and other properties. The microstructure of a sample can be quantified by applying 2D and 3D algorithms that results in morphometric parameters and geometric 3D models of microstructures (Herremans et al., 2013b). X-ray µCT enables the visualisation and quantification of 3D microstructures at scales down to a sub-micron level (Baker et al., 2012). Herremans et al. (2013b) describes the 3D microstructural parameters that can be used for the quantification of microstructure.

6. Image texture analysis

Image texture analysis is regarded as an essential feature in the food industry for quality evaluation (Zheng, Sun, & Zheng, 2006). One should, however, not confuse the concept of texture in computer vision (image texture analysis) and texture of food products (Zheng et al., 2006). Food texture is described by properties such as hardness, elasticity, viscosity and chewiness in contrast to image texture that refers to coarseness, fineness, smoothness and graininess. Image texture is regarded as the spatial arrangement of the brightness values of pixels and is comprised of four different texture feature categories, i.e. statistical texture, structural texture, model-based texture and transform-based texture (Zheng et al., 2006). Statistical texture makes use of statistical methods obtained from higher-order pixel grey values. Structural texture is based on structural primitives conducted from the grey values of pixels. Model-based texture is achieved by computing coefficients from a model based on the association of the grey values between a pixel and its neighbouring pixels. Transform-based texture is based on the use of statistical measurements from images which is transformed with specific techniques. Of the above mentioned the most frequently used technique in the food industry, for quality grading, is statistical texture because of its high accuracy and reduced computation time.

6.1. Principles

Images consist of basic components known as pixels. Each pixel includes two kinds of information, i.e. the brightness value as well as the locations in the coordinates that are allocated to the images (Zheng et al., 2006). Brightness is a colour feature, while the latter correlates to shape or size features. Another image feature is texture and it corresponds to both the above mentioned features (Zheng et al., 2006). One of the most widely used statistical texture analysis methods is grey level co-occurrence matrix (GLCM) and this method extracts textural features by statistical methods from the co-occurrence matrix. Information on the distribution of grey level intensities in relation to the relative position of pixels with equal intensities is provided by a GLCM (Palival, Visen, Jayas, & White, 2003).

6.2. Applications

Texture is regarded as an important image feature that can be used for describing image properties and it has a wide range of applications, which includes food quality evaluation. From the texture in images, changes in the intensity values of the pixels can be observed, since a change in intensity might indicate a change in geometric structure (Zheng et al., 2006). In the food industry, texture can be an indicator of quality as it can reflect the cellular structure of food. For instance, texture can be used to reflect beef tenderness (Li, Tan, Martz, & Heymann, 1999). The food industry is regarded as one of the top ten manufacturers using computer vision for image texture analysis as its application includes a wide range of foodstuffs i.e. vegetables (Thybo et al., 2004), cereal grains (Paliwal et al., 2003) and fruits (Kondo, Ahmad, Monta, & Murase, 2000).

7. Food applications

In recent years, X-ray µCT has become more commonplace in food science for evaluating quality and microstructure, enabling a better understanding of the physical structure of a sample. X-ray µCT has been investigated on an extensive range of commodities (fish, meat, fruit and vegetables, dairy, cereals, coffee beans, nuts, confectionary and baked products) and applications (internal disorder, microstructural characterisation and quantification, infestation detection, visualise pore structure and pore size distribution; estimate and evaluate a specific ingredient or component).

Reliable microstructural information on foods undergoing chemical and physical processes has successfully been obtained using X-ray µCT (Leonard et al., 2008). This tool is however still relatively new in the field of food processing (Lim & Barigou, 2004). In the food industry 3D X-ray microstructural applications are gaining popularity in order to understand the functionality of food components and ingredients (Chawani et al., 2012; Pareyt et al., 2009), and to determine internal quality, especially to detect internal defects in agricultural products (Kotwaliwale et al., 2014).

X-ray µCT is particularly well suited to investigate the dynamics of structural changes in food, provided that it takes the time resolution constraints into account. Examples include the 3D characterisation of three-phase systems to track the microstructural evolution in ice cream (Pinzer et al., 2012) and to study bread dough aeration dynamics (Trinh, Lowe, Campbell, Withers, & Martin, 2013). Challenges encountered in such applications are illustrated by Turbin-Orger et al. (2015) who examined the evolution of cellular structures in fermenting wheat flour dough, specifically looking at the growth and setting of gas bubbles. An overview of X-ray µCT applications related to the various commodities in the food industry is given in Table 1.

7.1. Meat and fish

Most X-ray µCT applications on meat considered the estimation of fat and its distribution. Fat contributes to palatability (juiciness, taste and texture) of meat products. Chemical extraction methods are time-consuming, expensive, and destructive and make use of flammable solvents harmful to the environment and health. Frisullo et al. (2009) investigated the fat distribution (qualitative) as well as the content (quantitative) in salamis by means of the percentage object volume (POV), structure thickness and object structure volume ratio (OSVR). Validation of the X-ray µCT technique with chemical analysis showed no statistical differences. It was also possible to determine the microstructure of fat and protein simultaneously (quantitatively and qualitatively). Conventional chemical techniques only quantify chemical components one at a time.

The intramuscular fat content and distribution in various beef meat joints and breeds could be accurately determined (r = 0.92-0.99, P < 0.001) using the POV as determined with X-ray µCT and the soxhlet extraction as reference method (Frisullo, Marino, Laverse, Albenzio, & Del Nobile, 2010c). Although this method is expensive, it provides more information regarding the fat distribution thus enabling a more accurate description of the
Table 1
An overview of X-ray μCT applications related to various food commodities and types.

<table>
<thead>
<tr>
<th>Food commodity/type</th>
<th>Tube voltage and current</th>
<th>Spatial resolution</th>
<th>Application</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat and fish</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chicken nuggets</td>
<td>100 kV, 98 kV, 14.06 μm</td>
<td>106 mA</td>
<td>Quantitative determination of eye formation</td>
<td>Schuetz et al., 2013</td>
</tr>
<tr>
<td>Cured pork</td>
<td>130 kV, 6.2 pixels/mm</td>
<td></td>
<td>Quantification of salt concentrations</td>
<td>Adedeji & Ngadi, 2011</td>
</tr>
<tr>
<td>Dry cured ham</td>
<td>80, 120 and 140 kV, 250 mA</td>
<td>1.1 pixels/mm</td>
<td>Prediction of salt and water content</td>
<td>Vestergaard, Risman, & Adler-Nissen, 2004</td>
</tr>
<tr>
<td>Freshwater fish</td>
<td>—</td>
<td>0.3, 0.5 and 0.6 pixels/mm</td>
<td>Estimation of lean meat content</td>
<td>Follows et al., 2009</td>
</tr>
<tr>
<td>Lamb</td>
<td>—</td>
<td>15 μm</td>
<td>Intramuscular fat level and distribution</td>
<td>Romvár, Hancz, Petrás, Molnár, & Horn, 2002</td>
</tr>
<tr>
<td>Pork</td>
<td>140 kV, 145 mA</td>
<td>2.56 pixels/mm</td>
<td>Salt and fat distribution analysis</td>
<td>Karamichou, Richardson, Nute, McLean, & Bishop, 2006</td>
</tr>
<tr>
<td>Pork</td>
<td>80, 110 and 130 kV, 106 mA</td>
<td>0.3, 0.5 and 0.6 pixels/mm</td>
<td>Fat deposition and distribution</td>
<td>Nicol et al., 2008</td>
</tr>
<tr>
<td>Porc</td>
<td>140 kV, 145 mA</td>
<td>—</td>
<td>Lean meat prediction using a density model</td>
<td>Picouet, Teran, Gispert, & Font i Furnol, 2010</td>
</tr>
<tr>
<td>Processed meat</td>
<td>82 kVp, 125 μA</td>
<td>15 μm</td>
<td>Estimation of lean meat content</td>
<td>Frisullo et al., 2009</td>
</tr>
<tr>
<td>Salmon</td>
<td>80, 110 and 130 kV, 106 mA</td>
<td>2.56 pixels/mm</td>
<td>Salt and fat distribution analysis</td>
<td>Segtnan et al., 2009</td>
</tr>
<tr>
<td>Salmon</td>
<td>150 kV, 164 μA</td>
<td>—</td>
<td>Ice recrystallisation</td>
<td>Syamaladevi, Manahiloh, Muhunthan, & Sablani, 2012</td>
</tr>
<tr>
<td>Sausages</td>
<td>100 kVp, 100 μA</td>
<td>17.3 μm</td>
<td>Microstructural analysis and the relationship with hardness</td>
<td>Santos-Garcés et al., 2013</td>
</tr>
<tr>
<td>Dairy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheese</td>
<td>120 kV, 150 mA</td>
<td>0.424 and 0.431 pixels/mm</td>
<td>Quantitative determination of eye formation</td>
<td>Guggisberg et al., 2013</td>
</tr>
<tr>
<td>Cheese</td>
<td>120 kV, 150 mA</td>
<td>0.423–0.508 pixels/mm</td>
<td>Quantitative determination of eye formation</td>
<td>Laverse et al., 2011b</td>
</tr>
<tr>
<td>Cream cheese</td>
<td>100 kVp, 100 μA</td>
<td>2 μm</td>
<td>Microstructural characterisation</td>
<td>Riley, Sturrock, Mooney, & Luck, 2014</td>
</tr>
<tr>
<td>Eggshell</td>
<td>85 kV, 70 μA</td>
<td>1.5 μm</td>
<td>Quantification of microstructure</td>
<td>Pinzer et al., 2012</td>
</tr>
<tr>
<td>Ice cream</td>
<td>75 kV</td>
<td>6 μm</td>
<td>Tracking microstructural evolution</td>
<td>Laverse et al., 2012</td>
</tr>
<tr>
<td>Mayonnaise</td>
<td>100 kVp, 100 μA</td>
<td>2 μm</td>
<td>Microstructural characterisation</td>
<td>Chawanji et al., 2012</td>
</tr>
<tr>
<td>Milk powder</td>
<td>45 kV, 177 μA</td>
<td>2 μm</td>
<td>Microstructure of loose-packed and compacted milk powders</td>
<td></td>
</tr>
<tr>
<td>Yogurt</td>
<td>100 kVp, 100 μA</td>
<td>2 μm</td>
<td>Fat microstructure</td>
<td>Laverse et al., 2011a</td>
</tr>
<tr>
<td>Fruit and vegetables</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apples</td>
<td>40 kV</td>
<td>9.89 μm</td>
<td>Microstructural visualisation of different cultivars</td>
<td>Ting, Silcock, Bremer, & Biasioli, 2013</td>
</tr>
<tr>
<td>Apples</td>
<td>85 and 58 kV</td>
<td>82.6 and 48.8 μm</td>
<td>Quantitative microstructural engineering</td>
<td>Herremans et al., 2014b</td>
</tr>
<tr>
<td>Apples</td>
<td>80 kV, 100 μA and 49 kV, 201 μA</td>
<td>4.8 μm</td>
<td>Comparison of X-ray CT and MRI to detect watercore disorder</td>
<td>Herremans et al., 2014a</td>
</tr>
<tr>
<td>Apples</td>
<td>63 kV, 156 μA</td>
<td>8.5 μm</td>
<td>Investigation of the multifractal properties of pore-size distribution</td>
<td>Mendoza et al., 2010</td>
</tr>
<tr>
<td>Apples</td>
<td>58 kV</td>
<td>4.8 μm</td>
<td>Characterisation of ‘Braeburn’ browning disorder</td>
<td>Herremans et al., 2013b</td>
</tr>
<tr>
<td>Bananas</td>
<td>60 kV, 167 μA</td>
<td>15 μm</td>
<td>Effect of far-infrared radiation on the microstructure</td>
<td>Léonard et al., 2008</td>
</tr>
<tr>
<td>Cucumbers, pineapples, cherries and chestnuts</td>
<td>120 kV, 170 and 1.289 pixels/mm</td>
<td>—</td>
<td>Internal characterisation of agricultural products</td>
<td>Donis-Gonzalez et al., 2014b</td>
</tr>
<tr>
<td>Kiwi fruit</td>
<td>60 kV, 167 μA</td>
<td>4.87 μm</td>
<td>Microstructural characterisation</td>
<td>Centre et al., 2014</td>
</tr>
<tr>
<td>Mango</td>
<td>150 keV, 3 μA</td>
<td>—</td>
<td>Linking X-ray absorption with physicochemical properties</td>
<td>Barcelona, Tojo, & Watanabe, 1999</td>
</tr>
<tr>
<td>Nectarines</td>
<td>80 kV, 40 mA</td>
<td>—</td>
<td>Woolly breakdown</td>
<td>Sonego, Ben-Arie, Raynal, & Pech, 1995</td>
</tr>
<tr>
<td>Pears</td>
<td>53 kV, 0.21 mA</td>
<td>—</td>
<td>Investigating core breakdown</td>
<td>Lamerton & Faccioni, 2003</td>
</tr>
<tr>
<td>Pomegranate</td>
<td>200 kV, 100 μA</td>
<td>71.4 μm</td>
<td>Quantification and characterisation of internal structure</td>
<td>Magwaza & Opara, 2014</td>
</tr>
<tr>
<td>Tomatoes</td>
<td>—</td>
<td>—</td>
<td>Determining maturity</td>
<td>Brecht et al., 1991</td>
</tr>
<tr>
<td>Cereals and cereal products</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cereal powders</td>
<td>50 kV, 800 μA</td>
<td>6.46 μm</td>
<td>Internal microstructural characterisation to study process structure relationships</td>
<td>Hafsa et al., 2014</td>
</tr>
<tr>
<td>Cornflakes</td>
<td>—</td>
<td>15 μm</td>
<td>Relationships between texture, mechanical properties and structure</td>
<td>Chaunier, Della Valle, & Lourdin, 2007</td>
</tr>
<tr>
<td>Crackers, coated biscuit shells and wheat based soup</td>
<td>50 kV, 100 μA</td>
<td>15 and 18 μm</td>
<td>Imaging and analysis of porous cereal products</td>
<td>Van Daling et al., 2007</td>
</tr>
<tr>
<td>Maize</td>
<td>40 kV</td>
<td>—</td>
<td>Analysis of maize kernel density and volume</td>
<td>Gustin et al., 2013</td>
</tr>
<tr>
<td>Maize</td>
<td>60 kV, 240 μA</td>
<td>13.4 μm</td>
<td>Estimation of maize kernel hardness using a density calibration</td>
<td>Guelpa et al., 2015</td>
</tr>
<tr>
<td>Maize</td>
<td>150 kV, 70 μA</td>
<td>8 μm</td>
<td>Imaging and automated detection of Sitophilus oryzae (Coleoptera: Curculionidae) pupae</td>
<td>Williams, 2013</td>
</tr>
<tr>
<td>Rice</td>
<td>46 kV, 75 μA</td>
<td>3.91 μm</td>
<td>Study of high-amylose and wild-type rice kernel structure</td>
<td>Zhu et al., 2012</td>
</tr>
<tr>
<td>Rice</td>
<td>50 kV, 100 μA</td>
<td>9.1 μm</td>
<td>Effect of kernel microstructure on cooking behaviour</td>
<td>Mohoric et al., 2009</td>
</tr>
<tr>
<td>Rice</td>
<td>50 kV, 100 μA</td>
<td>9.1 μm</td>
<td>Structural and hydration properties of heat-treated rice</td>
<td>Witek et al., 2010</td>
</tr>
<tr>
<td>Wheat</td>
<td>140 kV, 96 mA</td>
<td>3.42 pixels/mm</td>
<td>Imaging and automated detection of Sitophilus oryzae (Coleoptera: Curculionidae) pupae</td>
<td>Toews, Pearson, & Campbell, 2006</td>
</tr>
</tbody>
</table>
7.2. Dairy products

The dairy industry has been using X-ray μCT for a number of analyses as detailed in Table 1. More recently, complex products such as cream cheese (Laverse, Mastromatteo, Frisullo, & Del Nobile, 2011b) and mayonnaise (Laverse, Mastromatteo, Frisullo, & Del Nobile, 2012) were evaluated for a variety of characteristics. Pinzer et al. (2012) used X-ray μCT to track the microstructural evolution during temperature variation in ice cream by means of time-lapse studies.

The microstructure of milk powders, both loose-packed and compacted as well as spray-dried skimmed and whole milk powders was examined by Chawanji et al. (2012). This allowed the quantification of the proportion of interstitial and occluded air voids. This is of importance as the packing density is portrayed by the powder particle shape, size and the particles and internal voids could be characterised. It was found that the disparity in the air voids of the loose-packed and compacted samples were due to the powder particle shape, size and surface properties.

7.3. Fruit and vegetables

The fruit and vegetable industry suffers great losses, as approximately 25–30% of the production is discarded after harvest due to undetectable internal quality defects and safety problems. Fresh fruit and vegetable quality is measured in terms of external factors (i.e. colour, shape, size and surface mould) as well as internal disorders that is the result of physiological and anatomical changes (e.g. moisture loss, senescence, bruising, decay, insect injury, discolouration and microorganism attack) (Donis-González et al., 2014b). One of the most important advantages of X-ray imaging is that defects or internal disorders can be identified and visualised in μCT images, before they can be seen on the product itself. However, in spite of the extensive research effort, internal characterisation of fresh fruit and vegetables using X-ray imaging is still uncommon in the industry.

Since the first application of X-ray μCT in the early 1990’s, the detection of maturity in green tomatoes (Brecht, Shewfelt, Garner, & Kinard, 1993) numerous investigations have been performed on fruit and vegetables making it the most prominent field of
application. X-ray μCT has mainly been used to determine factors that negatively impact quality such as anatomical and physiological deviations within the tissue of fruit and vegetables i.e. decay, insect infestations, internal disorders and cell breakdown. The earliest applications in horticulture focussed mostly on fruit such as mangoes and peaches, with little reported on vegetables.

An X-ray imaging inspection method to detect an internal disorder, spongy tissue, in mangoes was developed in 1993 (Thomas, Saxena, Chandra, Rao, & Bhatia, 1993). Differences between the healthy and affected fruit were indicated by variances in the grey values of the X-ray images. Spongy tissue appeared as darker regions, whereas the sound fruit were correlated to lighter areas. Density differences were also used to discriminate between sound mangoes (lighter regions) and fruit infested with weevils (dark areas) (Thomas, Kannan, Degwekar, & Ramamurthy, 1995).

A few studies compared MRI and X-ray μCT. Herremans et al. (2014b) investigated the effect of watercore disorder on different apple cultivars. Despite the better contrast in the MRI images, 89% of the fruit was correctly classified using X-ray μCT in comparison to the 79% classification accuracy with MRI. These techniques were also used to study the spatial distribution of core breakdown in ‘Conference’ pears (Lammertyn et al., 2003). Both were capable of differentiating between unaffected tissue, brown tissue and cavities. However, MRI appeared to produce a better contrast between unaffected and affected tissue.

A more recent study by Donis-González et al. (2014b) investigated the internal attributes of fresh agricultural products: pickling cucumbers (internal defects), pineapples (translucency defects) and cherries (pit presence and infestation) using traditional and ultrafast X-ray μCT imaging. The authors found that changes in the internal tissue of agricultural commodities, caused by various factors (e.g. insect damage, disorders or void presence), leads to significant changes in the HU. This value either increased or declined with respect to healthy tissue.

There is potential for non-destructive inline sorting of agricultural products using X-ray μCT. This will enable detection of internal quality characteristics (after validation under commercial conditions) at a relatively early stage and prevent fruit with short shelf life from entering the supply chain (Kannan, Jayas, and White, 2006). With visual assessment, the fungal damage is only detectable at an advanced stage of infection. With X-ray CT it was possible to visualise infestation earlier, when the damage is still not present on the exterior of a product.

With X-ray μCT both quantitative (e.g. volume, density) and qualitative (e.g. hardness classification) analyses of whole maize kernels could be performed (Guelpa, Du Plessis, Kidd, & Manley, 2013; Gustin et al., 2013). Guelpa et al. (2015) constructed an X-ray μCT density calibration for whole maize kernels, using polymer discs of known densities as calibration standards (Fig. 5). Larger cavities were much more prominent in the floury endosperm of the soft hybrids, resulting in lower kernel densities. Floury endosperm density was also lower than that of the vitreous endosperm.

7.4. Cereals and cereal products

Several papers have been published on the cellular structure of cereal grains and cereal products (Table 1). Neethirajan, Karunakaran, Jayas, and White (2006) investigated the airflow resistance of various grains in grain bulks. They observed that the ratio of total airspace to the total number of air paths is the best predictor for the difference in airflow resistance in grain bulks (Neethirajan et al. 2006).

Maize plays a vital role in the diet of the African population. The development of fungal infection during storage in silos is a concern as the presence of fungus renders the entire stock unsuitable for use and this consequently has an impact on the economy (Williams, 2013). With visual assessment, the fungal damage is only detectable at an advanced stage of infection. With X-ray CT it was possible to visualise infestation earlier, when the damage is still not present on the exterior of a product.

With X-ray μCT both quantitative (e.g. volume, density) and qualitative (e.g. hardness classification) analyses of whole maize kernels could be performed (Guelpa, Du Plessis, Kidd, & Manley, 2013; Gustin et al., 2013). Guelpa et al. (2015) constructed an X-ray μCT density calibration for whole maize kernels, using polymer discs of known densities as calibration standards (Fig. 5). Larger cavities were much more prominent in the floury endosperm of the soft hybrids, resulting in lower kernel densities. Floury endosperm density was also lower than that of the vitreous endosperm.

7.5. Coffee beans and nuts

During coffee processing, roasting forms one of the most important steps as this affects the sensorial and textural characteristics of the roasted beans. A few studies focussed on the microstructural and morphological alterations of coffee beans induced by roasting (Table 1). Roasting had a significant impact on the microstructure as it led to the development of a porous bean structure (Pittia et al., 2011). Pore shapes, sizes and distributions are relatively easy to measure with X-ray μCT. Because of the rupture of the bonds in the internal structure during roasting, the total pore volume and porosity increased and density decreased with an

Fig. 5. Stack of seven polymer discs, used for the density calibration, along with eight maize kernels with (a) showing the floral oasis, used for mounting, and (b) with the mounting material removed. Two-dimensional X-ray μCT slice images of a (c) hard and (d) soft maize kernel illustrating distinct, large cavities (marked with white circles) present in mostly the floury endosperm. Cavities are shown as black in X-ray images.
increase in the roasting time (Frisullo et al., 2012). X-ray μCT could help to achieve a better understanding of the impact of roasting on the microstructural evolution of coffee beans, which may influence stability along with grinding and brewing performances. Three-dimensional volumes can be used to visualise and quantify the increase in porosity (cavities and pores) as illustrated in Fig. 6 for a maize kernel before and after roasting.

Donis-González et al. (2014b) investigated the internal decay and internal characteristics of chestnuts using the ultrafast ROFEX-scanner. In a similar study postharvest non-invasive assessment of internal decay in fresh chestnuts was performed using a medical CT scanner (Donis-González, Guyer, Fulbright, & Pease, 2014a).

7.6. Confectionary

Applications where the microstructure of products is highly correlated to the physical and sensory attributes, to either evaluate consumers’ acceptance (Haedelt et al., 2007) or to develop food products with desired properties (e.g. mechanical and organoleptic) (Lim & Barigou, 2004), have also been assessed using X-ray μCT. Table 1 details X-ray μCT applied to confectionary. Many confectionary products exhibit a cellular foam structure (e.g. mousse, muffins, chocolate and biscuits) that needs to be characterised so that the relationship between structure and mechanical properties can be determined. X-ray CT applied in confectionary applications enables real-time, non-destructive analysis of complex aerated products. In a novel approach by Haedelt et al. (2007), X-ray CT was used to characterise the structure of bubble-included chocolate produced using different gasses. This enabled the visualisation and interpretation of the bubble distribution, bubble size and number of bubbles in the chocolate and was related to sensory responses.

7.7. Dough and baked products

Good quality bread is influenced by the quality of the dough and the processing parameters. X-ray CT is ideal for the characterisation of the internal structure of porous products (Table 1). It can be applied to analyse the dough and the finished product. Knowledge on food microstructure can be used to identify key processing parameters that may influence quality. Functional, technological and physicochemical properties is influenced by structure—property relationships e.g. in solid foams like bread, cakes and biscuits the consumer acceptance is strongly associated with the texture.

Several results have been published on the cellular structure of dough, bread and other baked products using either laboratory X-ray CT devices (Agbisit, Alavi, Cheng, Herald, & Trater, 2007; Hirte, Primo-Martin, Meinders, & Hamer, 2012; Wang, Austin, & Bell, 2011) or synchrotron sources (Lassoued, Babin, Della Valle, Devaux, & Réguerre, 2007).

Most of the studies addressing bread microstructure focused on the visualisation of the porous structure where quantitative analysis entailed cell shape, cell wall thickness, void fraction, fineness, crumb porosity, anisotropy, pore size distribution and the geometry and orientation of pore networks. These investigations emphasized the important role the pore networks play and has improved the understanding thereof. A novel X-ray μCT study investigated the bubble size distribution in wheat flour dough (Bellido, Scanlon, Page, & Hallgrimson, 2006), opening the possibility of gaining more knowledge on the aeration phenomenon in wheat flour dough.

This technique enables examination at microscopic level, which is useful to the food industry, as the accurate calculation of the number, dimension and distribution of pores could lead to the improvement of sensorial attributes. As is often the case with making use of novel technology, most are only feasibility studies, performed on laboratory scale and not in a commercial environment. Thus, there is room for future investigations and developments in the technique.

8. Limitations

Even though some of the limitations of X-ray μCT are intrinsic to the technique, others are currently being addressed and are likely to have a reduced influence in future.

8.1. Time and financial constraints

The use of this technique in industry is still limited due to time and financial constraints (Kotwalwale et al., 2014). Even though modifications in the hardware have considerably reduced the time that is needed for a scan, it remains a concern (Kotwalwale et al., 2014). Culp et al. (2015) reported that it took up to 30 min to scan single maize kernels at a resolution of 13.4 μm, whereas a two hour scan time was needed to obtain a 6 μm resolution. Several studies which compare the performance of X-ray μCT against other imaging techniques, i.e. MRI, has revealed that X-ray is less costly.
and more convenient (Lammertyn et al., 2003). Most X-ray μCT investigations on food, to date, have been feasibility studies performed on a limited number of samples because of the costs involved. Large data volumes (gigabytes) call for considerable computer resources, with considerable storage capacity, for visualisation and analysis. In addition to image acquisition being time-consuming, image analysis is also a very lengthy procedure and is therefore a real limitation in the use of this technique. Segmentation of one image could take up to three hours, whereas further quantitative measurements to derive the main characteristics could take another hour. The time taken to analyse images is, however, dependent on the complexity of the sample, the number of ROIs created and the type of quantitative measurements required.

8.3. Operator dependency

Sample during acquisition (Cnudde & Boone, 2013). Fortunately, beam hardening artefacts can be compensated for by making use of filters or correction tools. However, many procedures for the compensation of beam hardening artefacts or the removal of other artefacts may influence the image quality by reducing the spatial resolution (Baker et al., 2012).

Besides the three main artefacts, others may also occur i.e. ring artefacts, streak artefacts and artefacts caused by movement of the sample during acquisition (Cnudde & Boone, 2013). Angle artefacts occur because of the loss of resolution in a 2D CT image due to the limited number of available projection images. Thus, imaging artefacts complicate data acquisition and interpretation (Cnudde & Boone, 2013).

8.4. Imaging artefacts

Images may contain errors which could be as a result of the sample shape, leading to shading effects or optical errors. Three major artefacts can occur during image acquisition: beam hardening, the cone-beam effect and phase-contrast artefacts (Cnudde & Boone, 2013). Angle artefacts occur because of the loss of resolution in a 2D CT image due to the limited number of available projection images. Thus, imaging artefacts complicate data acquisition and interpretation (Cnudde & Boone, 2013). The quantitative results obtained from 3D analysis should rather be considered as relative than absolute results (Cnudde & Boone, 2013).

9. Conclusion

X-ray μCT is an essential development in imaging technology, which has eliminated some of the shortcomings of traditional imaging by enabling the non-invasive, 3D and quantitative characterisation of food microstructure. Consequently, it has become an increasingly popular device to investigate food microstructure. X-ray μCT now offers characterisation of food properties non-destructively on a micro-scale on which bases decisions in the processing environment can be made. X-ray μCT is likely to be increasingly used to develop classification algorithms to sort food, especially fresh agricultural commodities, on the basis of their internal characteristics. Ideally, a commercial sorting system using μCT could be developed. However, this will remain a challenge as high throughput requirements will have to be met. With improvements in instruments and computational power, it is expected that X-ray imaging and μCT would become more applicable. It is foreseen that the interest of X-ray μCT will continue to increase and that this technique will become indispensable for food quality evaluation and product development. High-resolution X-ray μCT can be used for many food science applications and its potential is only starting to be explored. It is hoped that this overview is an inspiration for new investigations that will benefit from further use of this breakthrough technology.

Acknowledgements

The authors wish to acknowledge the financial assistance of the Winter Cereal Trust for a study grant (Lettitia Schoeman) and the National Research Foundation (NRF) (Grant specific unique reference number (UID) 76641 and 88057).

References

Williams, P. J. (2013). Near infrared (NIR) hyperspectral imaging and X-ray computed tomography combined with statistical and multivariate data analysis to study *Fusarium* infection in maize (PhD thesis). South Africa: University of Stellenbosch.