X-ray computed tomography inspection in metal additive manufacturing: the role of witness specimens

Prof Anton du Plessis, Stellenbosch University, South Africa

Invited talk, 4th Symposium on Structural Integrity of Additive Manufactured Materials and Parts, Washington, 9 Oct 2019
In this talk

What will I talk about?

– X-ray CT in AM
– Porosity in metal PBF
 • Process parameter induced porosity
 • Non-process porosity and build flaws
– AM Round robin test: typical flaws and porosity in final parts
– Value of witness specimens analyzed by CT
– MicroCT round robin test
– Conclusions
Widely known already for:

- Porosity measurement
- Dimensional measurement / metrology
- X-ray tomography in AM
- Analysis of powder feedstock for quality – size, shape and porosity
- Density
- Time-lapse CT (or 4D CT)
- Surface roughness
- Multiscale CT, etc.
- Simulations – FEM

Porosity in metal AM

Major cause of porosity is wrong process parameters

- By using high resolution X-ray tomography, it is possible to visualize and quantify LoF vs keyhole mode pores and other forms of typical pore formations and distributions resulting in final parts
- Used small cubes and quantification of porosity from <0.05% to >5%
- Found sharp transition from “ideal” to LoF, with decreasing power

Porosity in metal AM

Morphology and distribution of pores

- Excessive LoF causes regular spaced pores, with irregular morphology
- Keyhole is rounded and randomly distributed

Porosity in metal AM

Hatch spacing increase
- Vertically oriented LoF pores

Porosity in metal AM

Contour-hatch track spacing
- Pores mainly near surfaces

* Effects of process parameters on porosity in laser powder bed fusion revealed by X-ray tomography.
Porosity in AM

Process induced porosity
- Lack of fusion: different forms
- Keyhole
- Contour pores
- Upskin pores
- Inclusions and powder contamination
- Etc.

Other build porosity and flaws
- Layered lack of fusion
- Stop-start flaw
- Recoater blade damage causing irregular powder spreading and flaws
- Etc.
AM round robin test (RR1)

Goal of the AM round robin tests

- Aim was to demo “prescribed CT scan parameters & image analysis recipes” – towards standardization
- Commercial systems used at service centers and R&D labs across 3 continents: ID confidential
- All Ti6Al4V, no post processing besides support removal
- All built with > 99.8% density, with aim to be good parts
- Typical errors are highlighted which are still present often in AM parts

AM round robin test (RR1)

Same parts built on various L-PBF systems

- 10 mm cube coupon sample for porosity quantification and visualization
- Topology optimized bracket = example of complex part of interest
- Witness specimen (cylinder) built alongside bracket

AM round robin test

Example of LoF porosity

- This example is the most extreme case of 0.13% porosity
Example of contour porosity

– Only at contours
AM round robin test

Example of upskin porosity

– Only at top surface
AM round robin test (RR1)

What do we learn?

- Some small issues remain in L-PBF parts, with small pores of different morphologies and due to different causes
- Coupon samples with high resolution CT very useful to highlight and visualize these issues
- This can be used to improve processes

Questions remain:
- Do these porosity distributions transfer to the complex part?
- And are they also present in the witness cylinder?
AM round robin test

Lack of fusion pores
- Can be seen in witness
- And also present in complex part
Lack of fusion pores

- Can be seen in witness
- And also present in complex part
AM round robin test

Contour porosity

- Can be seen in witness
- And also present in complex part
AM round robin test

Upskin pores
- Can be seen in witness
- And also present in complex part
AM round robin test

Layered lack of fusion flaws

- Can be seen in witness
- Also present in bracket

5.5 mm
Stop-start flaw

Intentional stop-start flaw
Stop-start flaw

Intentional stop-start flaw
Stop-start flaw

Intentional stop-start flaw

- Can be seen in witness
- Not present in this case in bracket

- Scans of complex part still needed
- More work is needed to understand the formation of layered flaws and their extent across the build plane
- Can be seen in witness specimen by microCT
MicroCT robin test

Set of parts selected to send to 10 microCT labs

- 10 mm cube (upskin porosity)
- Witness cylinder (intentional stop-start flaw)
- Complex bracket (contour porosity)

- Result?
- All labs could positively identify the porosity distributions
- Especially the stop-start flaw was no problem

- To the right: one of the set of results as example – showing a series of completed analyses using pre-set X-ray CT scan parameters and image analysis steps (a recipe).

Conclusions

- Cube coupon samples can be used to improve AM processes
- Witness specimens contain information on process porosity as well as other flaws that can occur during build
- Fixed/prescribed CT scan and image analysis steps can be used to improve reproducibility of CT results – especially for fixed samples such as 10 mm coupon and 15 mm witness cylinder
- CT information cannot be used alone

CT image quality measurement method + video:
https://www.researchgate.net/publication/335842062_Not_all_scans_are_equal_X-ray_tomography_image_quality_measurement
Thank you. Prof Anton du Plessis

October 7-10, 2019
Gaylord National Resort and Convention Center

I am open for collaboration in the areas of AM structural integrity, biomimetic design for AM and X-ray CT in general. Please follow my work and keep in touch via:

LinkedIn https://www.linkedin.com/in/profantonduplessis/
Twitter @AdditiveAnton
Website http://blogs.sun.ac.za/duplessis
Email anton2@sun.ac.za

www.amcoe.org