

### Introduction to STATISTICA





Australia: StatSoft Pacific Pty Ltd. Brazil: StatSoft Brazil Ltda. Czech Republic: StatSoft Czech Rep. s.r.o. Israel: StatSoft Israel Ltd. France: StatSoft France

Germany: StatSoft GmbH Hungary: StatSoft Hungary Ltd. Italy: StatSoft Italia srl

Japan: StatSoft Japan Inc. Korea: StatSoft Korea Netherlands: StatSoft Benelux BV Poland: StatSoft Polska Sp. z o. o.

Portugal: StatSoft Iberica Ltda. Russia: StatSoft Russia Singapore: StatSoft Singapore S. Africa: StatSoft S. Africa (Pty) Ltd.

Spain: StatSoft Espana Sweden: StatSoft Scandinavia AB Taiwan: StatSoft Taiwan UK: StatSoft Ltd.

Copyright StatSoft, Inc., 1984-2005. StatSoft, StatSoft logo, STAT/STICA, SEWSS, SEDAS, Data Miner, SEPATH and GTrees are trademarks of StatSoft, Inc.



### Outline

STRATETICS/A

After today's training session you will:

- Know the three basic output channels of STATISTICA and how to change the setting to your liking
- Be able to manipulate STATISTICA spreadsheets (e.g. edit variables and cases)
- Perform basic data management operations(recoding data, using spreadsheet formulas, setting case selection conditions, etc.)
- Import data from external data sources such as excel files, databases (as well as create random samples directly from the database)
- Review basic descriptive statistics such as the mean, median, standard deviation, and compute correlations.

#### A StatSoft

# **Structure of STATISTICA 10**

| Sta               | tistics                              |   |     |                                 |
|-------------------|--------------------------------------|---|-----|---------------------------------|
| 48                | Resume Ctrl+R                        |   |     |                                 |
| ¥                 | ByGroup Analysis                     |   |     |                                 |
| Zh                | Basic Statistics/Tables              |   |     |                                 |
| 12                | Multiple Regression                  |   |     |                                 |
| 1,0               | ANOVA                                |   |     |                                 |
| 2                 | Nonparametrics                       |   |     |                                 |
| 29                | Distribution Fitting                 |   |     |                                 |
| ~?                | Advanced Linear/Nonlinear Models     | ۶ | GLM | General Linear Models           |
| ¥                 | Multivariate Exploratory Techniques  | ۶ | 85  | Generalized Linear/Nonlinear Mo |
|                   | Industrial Statistics & Six Sigma    | ۲ | 192 | General Regression Models       |
| N <sup>2</sup> li | Power Analysis                       |   | PLS | General Partial Least Squares M |
| 16                | Neural Networks                      |   | 1   | NIPALS Algorithm (PCA/PLS)      |
| 5                 | Da <u>t</u> a-Mining                 | ۲ | 8.  | Variance Components             |
| 2                 | QC Data Mining & Root Cause Analysis | ۲ | 7   | Sur <u>v</u> ival Analysis      |
| n\$r              | Text & Document Mining, Web Crawling | ۲ | Δ   | Nonlinear Estimation            |
|                   | Statistics of Block Data             | , | 2   | Fixed Nonlinear Regression      |
| -                 |                                      |   | Œ   | Log-Linear Analysis of Frequenc |
| 23                | STATISTICA Visual Basic              |   | 4   | Time Series/Forecasting         |
| 301               | Probability Calculator               |   | 22  | Structural Equation Modeling    |

Use the Statistics menu to access various analyses

STRATTISTUCA

Multiple analyses can be open simultaneously

All general purpose facilities are available in every module

Tables

#### A StatSoft'

#### STRATTISTUCA **3 Basic Channels for Output** Workbook1\* - Test of SS Whole Model vs. SS Residual (Adstudy.sta) \_ 🗆 × 🛅 Workbook1' Test of SS Whole Model vs. SS Residual (Adstudv.sta) 🗄 🖂 Basic Statistid Dependnt Multiple Multiple Adjusted df MS SS 🗄 🔄 Descriptiv Variable $\mathbb{R}^2$ Model Model Residual Model Desc GENDER 0.319861 0.102311 -0.099669 1.2605 9 0.14005 -11.0595🖻 🛅 2D Scatterpld Workbooks - 🗆 × 🛱 GAM Results.str . . . . . . . 1 . . . 5 . · · A · · 骨 🗄 💮 Nonpa Histogram of respo **Results of GAM Analysis** 🖻 🗠 🔂 Nd Fit summary (Adstu Responses vs. pre Reports 🔄 Power. Summary statistics edicted values - 🗆 🗵 1.08 Histoaram for 🖻 Genera Normal probal 🛅 GL - 🗆 × Half-normal pr Predicted and CORRECT1: No. correct solutions to first p... \_ 🗆 × □ Stand-alone Windows 20 Spline informa 18 No, correct solutions to first problem Spline informa 30 K-S d=.15196. p≥..20: Lilliefors p<.01 16 Spline informa - 🗆 × Spline informa 25 12 Spline informa - 🗆 🗵 12 20 10 Spline informa Data: Frequency table: MEASURE03 (Adstudy.sta) \_ 🗆 × Spline line and 10 15 Ca Observational Frequency table: MEASURE03 (Adstudy.sta) 0 10 Count Cumulative Percent Cumulative Category Percent Count 2 n. 5 4 8.00000 8.0000 8 8.00000 16.0000 11 19 22.00000 38.0000 5 6 25 12.00000 50.0000 67 3 28 6.00000 56.0000 3 31 6.00000 62.0000 8 7 38 14.00000 76.0000 5 43 10.00000 86.0000 4 47 8.00000 94.0000 50 6.00000 100.0000 ⊬





### **Data Files**

Title Bar

GENDER

MALE

MALE

MALE

MALE

FEMALE

FEMALE

🗰 Data: Adstudy.sta (25v by 50c)

Info Box

August 10th

R. Rafuse

T. Leiker

E. Bizot

K. French

K. Harrell

E. Van Landuvt

| Info Box   |
|------------|
| Title Bar  |
| Gile Heade |
| Variables  |
|            |

**Cases** 

FEMALE W. Noren COKE W. Willden MALE PEPSI S. Kohut FEMALE PEPSI MALE B. Madden PEPSI FEMALE PEPSI M. Bowling J. Willcoxson MALE COKE MALE J. Landrum PEPSI M. Taylor MALE COKE N.S. Madden FEMALE PEPSI K. Ridgway FEMALE PEPSI L. Cunha MALE COKE F. Wind FEMALE PEPSI 

File Header

ADVERT

Advertising Effectiveness Study.

PEPSI

COKE

COKE

PEPSI

PEPSI

COKE

Variables

÷.

MEASURE01 MEASURE02 MEASURE03 MEASURE04 MEASURE05 MEASURE06 MEA

Π

- 🗆 ×

Cases



# Variable Operations (The Vars button)

Access to the most common data management operations

| Var | s <del>*</del>       |              |
|-----|----------------------|--------------|
|     | <u>A</u> dd          |              |
|     | <u>M</u> ove         |              |
|     | <u>С</u> ору         |              |
|     | <u>D</u> elete       |              |
|     | Specs                |              |
|     | All Specs            |              |
| Ś   | <u>T</u> ext Labels  |              |
|     | Create Subset/Random | Sampling     |
|     | ⊻erify Data          | •            |
|     | <u>R</u> ank         |              |
| x=? | Recalc <u>u</u> late | Shift+F9     |
|     | R <u>e</u> code      |              |
|     | Replace Missing Data |              |
|     | Shi <u>f</u> t (Lag) |              |
|     | Standardize          |              |
|     | Date Operations      | Ctrl+Shift+O |



# Variable Dialog

Each variable has a set of properties or specifications associated with it. Click on a variable and select **Specs...** from the **Vars** toolbar button menu to display the **Variable** specification dialog.

| Variable 1                                                                                                        | ? ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Α                                                                                                                 | $\blacksquare  \blacksquare  \blacksquare  \blacksquare  \overset{\mathbf{V}}{=}  $ |  |  |  |  |  |  |  |
| Name: GENDER                                                                                                      | Type: Double  OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
| Measurement Type: Auto                                                                                            | Length: 8 🖆 Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
| 🗖 Excluded 🗖 Label 🗖 Case State                                                                                   | <u>M</u> D code: -9999 ► < <u>&gt;</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
| Display format<br>General<br>Number<br>Date<br>Time<br>Scientific<br>Currency<br>Percentage<br>Fraction<br>Custom | All Specs         Text Labels         Values/Stats         Properties         [Bundles]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| Long name (label or formula with <u>Eunctions</u> ):                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| Gender of the subjects (May 15, 1                                                                                 | (996).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
| Labels: use any text. Formulas: use variab<br>Examples: (a) = mean(v1:v3, sqrt(v7), AG                            | le names or v1, v2,, v0 is case #.<br>E) (b) = v1+v2; comment (after;)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |

STRATESTRICA





# Variable Types

STATISTICA Spreadsheet data files support the four basic data types listed below:

- Double is the default format for storing numeric values in STATISTICA. Each numeric value can have a unique text label attached.
- Integer is the data type to select for whole number values.
- Byte is the data type for integers between and including 0 through 255.
- Text is optimized for storing sequences of any characters of long length.





### **Text Labels**

Text labels can aid in the interpretation of their respective numeric values.

| Text Labels Editor                         | [GENDER]               | ? ×                |  |  |  |  |  |  |  |  |  |
|--------------------------------------------|------------------------|--------------------|--|--|--|--|--|--|--|--|--|
| A Arial                                    | 🔽 10 🔽 B Z 👖 📥 - 🐰 🗈 🛱 | ы                  |  |  |  |  |  |  |  |  |  |
| Sort Now + Renumber + Copy From + Apply To |                        |                    |  |  |  |  |  |  |  |  |  |
|                                            |                        |                    |  |  |  |  |  |  |  |  |  |
| Text Label                                 | Numeric Description    | OK                 |  |  |  |  |  |  |  |  |  |
| MALE                                       | 1                      | Cancel             |  |  |  |  |  |  |  |  |  |
| FEMALE                                     | 2                      |                    |  |  |  |  |  |  |  |  |  |
|                                            |                        |                    |  |  |  |  |  |  |  |  |  |
|                                            |                        |                    |  |  |  |  |  |  |  |  |  |
|                                            |                        |                    |  |  |  |  |  |  |  |  |  |
|                                            |                        | <u>D</u> elete Row |  |  |  |  |  |  |  |  |  |
|                                            |                        | Class All          |  |  |  |  |  |  |  |  |  |
|                                            |                        |                    |  |  |  |  |  |  |  |  |  |
|                                            |                        |                    |  |  |  |  |  |  |  |  |  |
|                                            |                        |                    |  |  |  |  |  |  |  |  |  |
|                                            |                        |                    |  |  |  |  |  |  |  |  |  |
|                                            |                        |                    |  |  |  |  |  |  |  |  |  |
|                                            |                        |                    |  |  |  |  |  |  |  |  |  |
|                                            |                        |                    |  |  |  |  |  |  |  |  |  |
| 2 complete Text Lab                        | els out of 2 rows      |                    |  |  |  |  |  |  |  |  |  |



#### STRATISTICA

### **Variables Specifications Editor**

All variables can be reviewed or edited in the *Variable Specifications Editor* 

|   | Variable Specifications Editor      |           |         |   |         |        |                                 |                     |       |  |
|---|-------------------------------------|-----------|---------|---|---------|--------|---------------------------------|---------------------|-------|--|
| € | 3.                                  | A Arial   |         | • | 10 💌    | BI     | u 🔺 🕺 🖻 🛍                       | <u>V</u> ars ▼      |       |  |
|   |                                     | Name      | Туре    |   | MD code | Length | Long Name (label<br>or formula) | Measurement<br>Type | Excli |  |
|   | 1                                   | GENDER    | Double  | • | -9999   |        | Gender of the subjects          | Auto 💌              | Γ     |  |
|   | 2                                   | ADVERT    | Double  | • | -9999   |        | Ad shown to the subje           | Auto 💌              | Γ     |  |
|   | 3                                   | MEASURE01 | Double  | • | -9999   |        |                                 | Auto 💌              | Γ     |  |
|   | - 4                                 | MEASURE02 | Double  | • | -9999   |        |                                 | Auto 💌              | Γ     |  |
|   | - 5                                 | MEASURE03 | Double  | • | -9999   |        |                                 | Auto 💌              | Г     |  |
|   | 6                                   | MEASURE04 | Double  | • | -9999   |        |                                 | Auto 💌              | Г     |  |
|   | - 7                                 | MEASURE05 | Double  | • | -9999   |        |                                 | Auto 💌              | []    |  |
|   | 8                                   | MEASURE06 | Double  | • | -9999   |        |                                 | Auto 💌              | Ε     |  |
|   | 9                                   | MEASURE07 | Double  | • | -9999   |        |                                 | Auto 💌              | E     |  |
|   | 10                                  | MEASURE08 | Double  | • | -9999   |        |                                 | Auto 💌              | Ε     |  |
|   | 11                                  | MEASURE09 | Double  | • | -9999   |        |                                 | Auto 💌              | Ε     |  |
|   | 12                                  | MEASURE10 | Double  | • | -9999   |        |                                 | Auto 💌              | Ε     |  |
|   | 13                                  | MEASURE11 | Double  | • | -9999   |        |                                 | Auto 💌              | Γ     |  |
|   | •                                   |           | Daulata |   | 0000    |        |                                 | 0                   | ▶     |  |
|   | Output to Spreadsheet     OK Cancel |           |         |   |         |        |                                 |                     |       |  |





### Case Operations (The Cases button)

Used to perform operations on selected groups of cases in the data file



11



### **Case Names**

Case names can be used as long, unique identifiers for the observations in the spreadsheet. They are also used by default as labels for many graphs.

Use the Case Names Manager to adjust case name length and width and to transfer case names to or from a variable



STLATUSTUCA





# Example 1: Creating a hypothetical data file



Let's begin by creating a hypothetical data file. We will enter information about 18 people. The spreadsheet will contain the gender, eye color, hair color, height, weight, and age of each person.

### M StatSoft



# Example Steps

|    | Create New Document           Image: Workbook         Image: In-place Database Interface         Image: Browser Window           Image: Spreadsheet         Image: Browser Window         Image: Browser Window <t< th=""></t<> |            |         |                     |                                 |                 |         |  |  |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------|---------------------|---------------------------------|-----------------|---------|--|--|--|
| Va | iable Specification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ons Editor | ▼ 10 ▼  | <b>B</b> <i>I</i> ] | u 🔺 🐰 🖻 f                       | <u>a</u> Vars - | ? ×     |  |  |  |
|    | Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Туре       | MD code | Length              | Long Name (label<br>or formula) | Measurement     | Exclude |  |  |  |
| 1  | Gender                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Text 💌     |         | 8                   |                                 | Auto 🔻          |         |  |  |  |
| 2  | Eye Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Text 💌     |         | 8                   |                                 | Auto 💌          |         |  |  |  |
| 3  | Hair Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Double 💌   | -9999   |                     |                                 | Auto 💌          |         |  |  |  |
| 4  | Height                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Double 💌   | -9999   |                     |                                 | Auto 💌          |         |  |  |  |
| 5  | Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Double 💌   | -9999   |                     |                                 | Auto 💌          |         |  |  |  |
| 6  | Age                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Double 💌   | -9999   |                     |                                 | Auto 💌          |         |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |         |                     |                                 |                 |         |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |         |                     |                                 |                 |         |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |         |                     |                                 |                 |         |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |         |                     |                                 |                 |         |  |  |  |
| •  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |         |                     |                                 |                 | ►       |  |  |  |
|    | OK Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |         |                     |                                 |                 |         |  |  |  |

1. Create a new data file with 6 variables and 18 cases.

STRATE STRICA

- 2. Save the spreadsheet.
- 3. Give the 6 variables these names *Gender*, *Eye Color*, *Hair Color*, *Height*, *Weight*, and *Age*.
- 4. Change the variable Type.

#### A StatSoft



# Example Steps

| Data: | Informatio  | n.sta* (6v b  | y 18c)     |        |         |     |
|-------|-------------|---------------|------------|--------|---------|-----|
| 🔠 Da  | ata: Inform | ation.sta* (l | 6v by 18c) |        |         | _ 🗆 |
|       |             | _             | _          |        | _       |     |
|       |             | 2             | 3          | 4      | 5       | 6   |
|       | Gender      | Eye Color     | Hair Color | Height | VVeight | Age |
| 1     | Female      | Blue          |            |        |         |     |
| 2     | Female      | Brown         |            |        |         |     |
| 3     | Female      | Green         |            |        |         |     |
| 4     | Female      | Blue          |            |        |         |     |
| 5     | Female      | Brown         |            |        |         |     |
| 6     | Female      | Green         |            |        |         |     |
| - 7   | Female      | Blue          |            |        |         |     |
| 8     | Female      | Brown         |            |        |         |     |
| 9     | Female      | Green         |            |        |         |     |
| 10    | Male        | Blue          |            |        |         |     |
| 11    | Male        | Brown         |            |        |         |     |
| 12    | Male        | Green         |            |        |         |     |
| 13    | Male        | Blue          |            |        |         |     |
| 14    | Male        | Brown         |            |        |         |     |
| 15    | Male        | Green         |            |        |         |     |
| 16    | Male        | Blue          |            |        |         |     |
| 17    | Male        | Brown         | _          |        |         |     |
| 18    | Male        | Green         |            |        |         |     |
| I.    |             |               | ·          |        |         |     |

#### 5. Enter the data.

- 6. Enter the values for *Eye Color*.
- 7. Color the cells under Gender.

SILA TRISILICA

- 8. Color the text in the cells under *Eye Color*.
- 9. Save your changes.





### **Block Stats**

Statistics for each row or column in a selected block can be computed and added to the spreadsheet by selecting the desired *Statistics of Block Data* from the shortcut menu.

| 🏢 Data: Adstudy.sta* (25v by 50c) |            |                        |                   |     |                       |                             |           |           |           |   |  |  |
|-----------------------------------|------------|------------------------|-------------------|-----|-----------------------|-----------------------------|-----------|-----------|-----------|---|--|--|
|                                   | Advertisir | ig Effectiver          | ness Study        |     |                       |                             |           |           |           |   |  |  |
|                                   | 1          | 2                      | 3                 |     | 4                     | 5                           | 6         | 6 7       |           |   |  |  |
|                                   | GENDER     | ADVERT                 | MEASUR            | E01 | MEASURE02             | MEASURE03                   | MEASURE04 | MEASURE05 | MEASURE06 | M |  |  |
| R. Rafuse                         | MALE       |                        |                   | 9   | 1                     | 6                           | 8         | 1         | 2         |   |  |  |
| T. Leiker                         | MAL 💷      | <u>Statistics of B</u> | ock Data 🔸        |     | Block <u>C</u> olumns | <u>M</u> eans               | 8         | 0         | 0         |   |  |  |
| E. Bizot                          | FEN 🔝      | <u>G</u> raphs of Blo  | ck Data 🔹 🕨       |     | Block <u>R</u> ows    | <ul> <li>Medians</li> </ul> | 9         | 8         | 8         |   |  |  |
| K. French                         | MAL 🕵      | Graphs of <u>I</u> np  | ut Data 🔷 🕨       | 7   | 9                     | <u>S</u> D's                | 5         | 9         | 9         |   |  |  |
| E. Van Landuyt                    | MAL v      | C.4                    | CHLV              | 7   | 1                     | ⊻alid N's                   | 2         | 8         | 9         |   |  |  |
| K. Harrell                        | FEN 😤      | շ                      |                   | 6   | 0                     | Sums                        | 8         | 3         | 1         |   |  |  |
| W. Noren                          | FEM 🖼      | <u>L</u> opy           | Ltri+L            | 7   | 4                     | Min's                       | 2         | 5         | 7         |   |  |  |
| W. Willden                        | MAL        | Copy <u>w</u> ith Hea  | aders             | 9   | 9                     | Maria                       | 6         | 6         | 8         |   |  |  |
| S. Kohut                          | FEM 🖪      | <u>P</u> aste          | Ctrl+V            | 7   | 8                     | M <u>a s</u><br>05%/-       | 3         | 6         | 9         |   |  |  |
| B. Madden                         | MAL        | Paste Sp <u>e</u> cial |                   | 6   | 6                     | <u>2</u> 5%'s               | 8         | 3         | 6         |   |  |  |
| M. Bowling                        | FEN        | Fill/Chandlardia       | n Plaak 🔹         | 4   | 6                     | <u>7</u> 5%'s               | 5         | 6         | 8         |   |  |  |
| J. Willcoxson                     | MAL 💾      | nii/otariualuiz<br>ot  | е <u>р</u> іоск • | 7   | 3                     | All                         | 7         | 0         | 6         |   |  |  |
| J. Landrum                        | MAL U      | Clear<br>-             | •                 | 6   | 2                     |                             | 1         | 8         | 1         |   |  |  |
| M. Taylor                         | MAL        | <u>F</u> ormat         | •                 | 7   | 2                     | 4                           | 8         | 1         | 2         |   |  |  |
| N.S. Madden                       | FEM        | Marking Cells          | ,                 | 6   | 2                     | 7                           | 5         | 7         | 2         |   |  |  |
| K. Ridgway                        | FEM        |                        |                   | 3   | 2                     | 5                           | 4         | 4         | 4         |   |  |  |
| L. Cunha                          | MALE       | COKE                   |                   | 2   | 9                     | 9                           | 3         | 1         | 4         |   |  |  |
| F. Wind                           | FEMALE     | PEPSI                  |                   | 1   | 0                     | 7                           | 5         | 2         | 4         |   |  |  |
|                                   |            |                        |                   | 0   | c                     | 1                           | 2         | 1         | 1         |   |  |  |



#### STRATISTICA

### Recode

The Recode dialog is used to define new values of the selected variable depending on the specific conditions that you define.

| Recode Values of Variable 4: MEA         | SURE02                            | ? ×                                                 |
|------------------------------------------|-----------------------------------|-----------------------------------------------------|
| Category 1<br>Include If:<br>MEASURE01<0 | New Value 1<br>• value •1         | OK<br>Cancel                                        |
| Category 2<br>Include If:<br>MEASURE01>0 | New Value 2<br>value 1<br>MD code | <u>_</u> [lear all<br>☐ Open<br><u>S</u> ave As     |
| Category 3                               | New Value 3<br>• value MD code    | Other<br>If no conditions are met, set values to:   |
| Category <u>4</u>                        | New Value 4<br>Value MD code      | © <u>M</u> D code<br>© value<br>⊙ <u>u</u> nchanged |





STRATETISTETCA

Sorting can be performed on both text and numeric values, as well as on case names, in either descending or ascending order.

| Variables           |                  |   | Variables | Direction | Sort By |
|---------------------|------------------|---|-----------|-----------|---------|
| casename            | Add Ver(e) N     |   | 1-Gender  | Ascending | Text    |
| 1-Gender            |                  |   |           |           |         |
| 2-Eye Color         | - Dissetion      |   |           |           |         |
| 3-Hair Color        |                  |   |           |           |         |
| 4-Height (in)       | O Ascending      |   |           |           |         |
| 5-Weight (lb)       |                  |   |           |           |         |
| 6-Age (yr)          | - Sort Bu-       |   |           |           |         |
| 7-Wellness 1        | C Numeric        |   |           |           |         |
| 8-Wellness 2        | C Text           |   |           |           |         |
| 9-Test Item 1       |                  |   |           |           |         |
| 10-Test Item 2      |                  |   |           |           |         |
| 11-Test Item 3      | < Berrove Var(s) |   |           |           |         |
| 12-Test Total (Avg) |                  |   |           |           |         |
|                     | < < Remove All   |   |           |           |         |
|                     |                  |   |           |           |         |
|                     |                  | - |           |           |         |



# **Example 2: Working with** Variables



### **1.Open the** InfoTwo.sta data file. Notice that this data file is similar to the one you created earlier. Data has been entered for the variables *Height*, Weight, and Age.

#### M StatSoft



# Example Steps

×

? ×



STRATTISTRICA

| A Arial  |                 | 10 💌        | <b>B Z U</b>   | <u>A</u> - | ∦ ⊑               | a 😩 🖂          |              |                                         |                           |          |
|----------|-----------------|-------------|----------------|------------|-------------------|----------------|--------------|-----------------------------------------|---------------------------|----------|
|          |                 |             | 5bû i o        |            |                   |                |              |                                         |                           |          |
| - Data:  | InfoTwo.sta* (6 | v by 18c)   |                |            |                   |                |              |                                         |                           | Ě        |
| <u>t</u> | 1               | 2           | 3              |            | 4                 | 5              | 6            |                                         |                           | <u>~</u> |
|          | Gender          | Eye Cold    | or Hair Col    | or         | Height            | vveight        | Age          |                                         |                           |          |
|          | Data: Infoli    | wo.sta- (7v | Dy 18CJ        |            |                   |                |              |                                         |                           |          |
|          |                 | 1<br>Gender | 2<br>Eye Color | Hair       | 3<br>Color        | 4<br>Height    | 5<br>Weight  | 6<br>Age                                | 7<br>SUM var              | 4-6      |
|          | 1               | female      | blue           | brow       | n                 | 69             | 26           | 1 32                                    |                           | 362      |
|          | 2               | female      | brown          | blac       | Add Var           | iables         |              |                                         |                           |          |
|          | 3               | female      | green          | red        | How m             | anır 1         | <u> </u>     | leo 0 in "Attor" f                      | iald to incart            | Π        |
|          | 4               | female      | blue           | fold       | <u>11</u> 000 III | any. In        |              | efore first varial                      | ole.                      |          |
|          | 5               | female      | brown          | brov       | <u>A</u> fter:    | SUM var        | 4-6 t        | )ouble-click on it<br>o select variable | or press F2<br>from list. | Car      |
|          | 7               | female      | green<br>blug  | rod        | Mana a            | Dunamic 9      | Sum          |                                         |                           |          |
|          | 8               | female      | hrown          | hlor       | <u>in</u> ame.    | Jo yn dinio (  | - Califi     | <u></u>                                 |                           |          |
| 4 con    | 9               | female      | areen          | brov       | <u>M</u> D cod    | te: -9999      |              | L <u>e</u> ngth: 8                      | 1                         |          |
|          | 10              | male        | blue           | blac       | _ Displa          | ay format —    |              |                                         |                           |          |
|          | 11              | male        | brown          | red        | Gen               | eral           |              |                                         |                           |          |
|          | 12              | male        | green          | blor       | Num               | ber            |              |                                         |                           |          |
|          | 13              | male        | blue           | brov       | Date              |                |              |                                         |                           |          |
|          | 14              | male        | brown          | blac       | Scie              | ntific         |              |                                         |                           |          |
|          | 15              | male        | green          | red        | Perc              | ency<br>entage |              |                                         |                           |          |
|          | 16              | male        | blue           | blor       | Frac              | tion           |              |                                         |                           |          |
|          | 17              | male        | brown          | brov       | Cust              | om             |              |                                         |                           |          |
|          | 18              | male        | green          | blac       |                   |                |              |                                         |                           |          |
|          |                 |             |                |            | Long n            | ame (label or  | formula with | n <u>F</u> unctions                     | ):                        |          |
| -        |                 |             |                | _          | =sum              | (v4:v6)        |              |                                         |                           |          |

- 2. Enter values for the *Hair Color* variable.
- 3. Find the sum of the *Height*, *Weight*, and *Age* variables for each case.
- 4. Create a dynamic variable that automatically updates as the data change.

### M StatSoft'



# Example Steps

| nclude If:<br>Dynamic Sum                                                                                                               | ▼<br><= 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                             | New Value 1<br>Value (<br>MD code                                                                                    | A                                                                                                                           |                                                                                             | -                                                                                                     |                                                                                                      | OK<br>Cancel                                                                                                                      |                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| ntegory <u>2</u><br>nclude If:<br>Dynamic Sum<br>ntegory <u>3</u>                                                                       | Sort 0<br>Varia<br>Case<br>1-Ge<br>2-Eye<br>3-Ha                                                                                                                                                                                                                                                                                                                                                                                                                                              | ptions<br>bbles<br>name<br>nder<br>e Color<br>ir Color                                      |                                                                                                                      | Add Var(s)                                                                                                                  |                                                                                             | Variables<br>1-Gender<br>9-Code<br>Iove Variab                                                        | Dir<br>As<br>As<br>Dies                                                                              | rection cending                                                                                                                   | ? ×<br>Sort By<br>Text<br>Numeric                                                                                                        |
| Data: InfoT                                                                                                                             | wo.sta* (9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ight<br>/ by 18c)                                                                           |                                                                                                                      | C Descen                                                                                                                    | ding                                                                                        | From variabl                                                                                          | e: juode                                                                                             |                                                                                                                                   |                                                                                                                                          |
|                                                                                                                                         | 1<br>Gender                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2<br>Code                                                                                   | 3<br>Eye Color                                                                                                       | 4<br>Hair Color                                                                                                             | 5<br>Height                                                                                 | 6<br>Weight                                                                                           | 7<br>Age                                                                                             | 8<br>SUM var 4-6                                                                                                                  | 9<br>Dynamic<br>Sum                                                                                                                      |
| 1                                                                                                                                       | female                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A                                                                                           | brown                                                                                                                | black                                                                                                                       | 66                                                                                          | 154                                                                                                   | 78                                                                                                   | 298                                                                                                                               | 298                                                                                                                                      |
| 2                                                                                                                                       | 2 female                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A                                                                                           | green                                                                                                                | red                                                                                                                         | 67                                                                                          | 198                                                                                                   | 32                                                                                                   | 297                                                                                                                               | 207                                                                                                                                      |
|                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                                                                                                                      |                                                                                                                             |                                                                                             |                                                                                                       |                                                                                                      | 201                                                                                                                               | 231                                                                                                                                      |
| 3                                                                                                                                       | 8 female                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A                                                                                           | blue                                                                                                                 | blonde                                                                                                                      | 70                                                                                          | 144                                                                                                   | 35                                                                                                   | 249                                                                                                                               | 249                                                                                                                                      |
| 3                                                                                                                                       | 8 female<br>1 female                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A<br>A                                                                                      | blue<br>brown                                                                                                        | blonde<br>brown                                                                                                             | 70<br>65                                                                                    | 144<br>185                                                                                            | 35<br>50                                                                                             | 249                                                                                                                               | 237<br>249<br>300                                                                                                                        |
| 3<br>2<br>6                                                                                                                             | 6 female<br>1 female<br>5 female                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A<br>A<br>A                                                                                 | blue<br>brown<br>green                                                                                               | blonde<br>brown<br>black                                                                                                    | 70<br>65<br>70                                                                              | 144<br>185<br>165                                                                                     | 35<br>50<br>58                                                                                       | 249<br>300<br>293                                                                                                                 | 249<br>300<br>293                                                                                                                        |
| 3<br>4<br>6<br>6                                                                                                                        | female<br>female<br>female<br>female                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A<br>A<br>A<br>A                                                                            | blue<br>brown<br>green<br>green                                                                                      | blonde<br>brown<br>black<br>brown                                                                                           | 70<br>65<br>70<br>73                                                                        | 144<br>185<br>165<br>161                                                                              | 35<br>50<br>58<br>45                                                                                 | 249<br>300<br>293<br>279                                                                                                          | 249<br>249<br>300<br>293<br>279                                                                                                          |
| 3<br>2<br>6<br>8<br>7                                                                                                                   | 6 female<br>1 female<br>5 female<br>6 female<br>7 female                                                                                                                                                                                                                                                                                                                                                                                                                                      | A<br>A<br>A<br>B                                                                            | blue<br>brown<br>green<br>green<br>blue                                                                              | blonde<br>brown<br>black<br>brown<br>brown                                                                                  | 70<br>65<br>70<br>73<br>69                                                                  | 144<br>185<br>165<br>161<br>270                                                                       | 35<br>50<br>58<br>45<br>32                                                                           | 249<br>300<br>293<br>279<br>362                                                                                                   | 237<br>249<br>300<br>293<br>279<br>371                                                                                                   |
| 3<br>4<br>6<br>7<br>7<br>8                                                                                                              | 6 female<br>female<br>female<br>female<br>female<br>female<br>female                                                                                                                                                                                                                                                                                                                                                                                                                          | A<br>A<br>A<br>B<br>B                                                                       | blue<br>brown<br>green<br>green<br>blue<br>blue                                                                      | blonde<br>brown<br>black<br>brown<br>brown<br>red                                                                           | 70<br>65<br>70<br>73<br>69<br>63                                                            | 144<br>185<br>165<br>161<br>270<br>212                                                                | 35<br>50<br>58<br>45<br>32<br>33                                                                     | 249<br>249<br>300<br>293<br>279<br>362<br>308                                                                                     | 249<br>300<br>293<br>279<br>371<br>308                                                                                                   |
| 3<br>2<br>6<br>7<br>7<br>8<br>8                                                                                                         | 6 female<br>6 female<br>6 female<br>7 female<br>7 female<br>8 female<br>9 female                                                                                                                                                                                                                                                                                                                                                                                                              | A<br>A<br>A<br>B<br>B<br>B<br>B                                                             | blue<br>brown<br>green<br>green<br>blue<br>blue<br>brown                                                             | blonde<br>brown<br>black<br>brown<br>brown<br>red<br>blonde                                                                 | 70<br>65<br>70<br>73<br>69<br>63<br>72                                                      | 144<br>185<br>165<br>161<br>270<br>212<br>187                                                         | 35<br>50<br>58<br>45<br>32<br>33<br>61                                                               | 249<br>249<br>300<br>293<br>279<br>362<br>308<br>320                                                                              | 249<br>300<br>293<br>279<br>371<br>308<br>320                                                                                            |
| 3<br>4<br>6<br>7<br>7<br>8<br>9<br>9<br>9                                                                                               | female<br>female<br>female<br>female<br>female<br>female<br>female<br>male                                                                                                                                                                                                                                                                                                                                                                                                                    | A<br>A<br>A<br>B<br>B<br>B<br>A                                                             | blue<br>brown<br>green<br>green<br>blue<br>blue<br>brown<br>blue                                                     | blonde<br>brown<br>black<br>brown<br>red<br>blonde<br>black                                                                 | 70<br>65<br>70<br>73<br>69<br>63<br>72<br>69                                                | 144<br>185<br>165<br>161<br>270<br>212<br>187<br>133                                                  | 35<br>50<br>58<br>45<br>32<br>33<br>61<br>66                                                         | 249<br>249<br>300<br>293<br>279<br>362<br>308<br>320<br>268                                                                       | 249<br>300<br>293<br>279<br>371<br>308<br>320<br>268                                                                                     |
| 3<br>4<br>6<br>7<br>8<br>8<br>9<br>10<br>11                                                                                             | female<br>female<br>female<br>female<br>female<br>female<br>female<br>male<br>male                                                                                                                                                                                                                                                                                                                                                                                                            | A<br>A<br>A<br>B<br>B<br>B<br>A<br>A                                                        | blue<br>brown<br>green<br>blue<br>blue<br>brown<br>blue<br>green                                                     | blonde<br>brown<br>black<br>brown<br>red<br>blonde<br>black<br>blonde                                                       | 70<br>65<br>70<br>73<br>69<br>63<br>72<br>69<br>69<br>66                                    | 144<br>185<br>165<br>161<br>270<br>212<br>187<br>133<br>179                                           | 35<br>50<br>58<br>45<br>32<br>33<br>61<br>66<br>39                                                   | 249<br>249<br>300<br>293<br>279<br>362<br>308<br>320<br>268<br>284                                                                | 237<br>249<br>300<br>293<br>279<br>371<br>308<br>320<br>268<br>284<br>284                                                                |
| 3<br>4<br>5<br>7<br>8<br>9<br>10<br>11<br>11<br>12                                                                                      | female<br>female<br>female<br>female<br>female<br>female<br>female<br>male<br>male<br>male<br>male                                                                                                                                                                                                                                                                                                                                                                                            | A<br>A<br>A<br>B<br>B<br>B<br>A<br>A<br>A                                                   | blue<br>brown<br>green<br>blue<br>blue<br>brown<br>blue<br>green<br>blue<br>blue                                     | blonde<br>brown<br>black<br>brown<br>red<br>blonde<br>black<br>blonde<br>brown                                              | 70<br>65<br>70<br>73<br>69<br>63<br>72<br>69<br>66<br>70                                    | 144<br>185<br>165<br>161<br>270<br>212<br>187<br>133<br>179<br>180                                    | 35<br>50<br>58<br>45<br>32<br>33<br>61<br>66<br>39<br>45                                             | 249<br>249<br>300<br>293<br>279<br>362<br>308<br>320<br>268<br>284<br>284<br>295                                                  | 237<br>249<br>300<br>293<br>279<br>371<br>308<br>320<br>268<br>284<br>284                                                                |
| 23<br>24<br>25<br>27<br>26<br>27<br>28<br>29<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20              | 3 female<br>4 female<br>5 female<br>6 female<br>7 female<br>8 female<br>9 female<br>1 male<br>1 male<br>2 male<br>2 male<br>3 male                                                                                                                                                                                                                                                                                                                                                            | A<br>A<br>A<br>B<br>B<br>B<br>A<br>A<br>A<br>A                                              | blue<br>brown<br>green<br>blue<br>blue<br>brown<br>blue<br>green<br>blue<br>blue<br>brown                            | blonde<br>brown<br>black<br>brown<br>red<br>blonde<br>black<br>blonde<br>brown<br>black                                     | 70<br>65<br>70<br>73<br>69<br>63<br>72<br>69<br>66<br>70<br>71                              | 144<br>185<br>165<br>161<br>270<br>212<br>187<br>133<br>179<br>180<br>174                             | 35<br>35<br>50<br>58<br>45<br>32<br>33<br>61<br>66<br>39<br>45<br>43                                 | 249<br>300<br>293<br>279<br>362<br>308<br>320<br>268<br>284<br>284<br>295<br>288                                                  | 239<br>249<br>300<br>293<br>279<br>371<br>308<br>320<br>268<br>284<br>284<br>295<br>288                                                  |
| 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                             | 3 female<br>4 female<br>5 female<br>6 female<br>7 female<br>9 female<br>1 male<br>1 male<br>2 male<br>3 male<br>4 male<br>4 male                                                                                                                                                                                                                                                                                                                                                              | A<br>A<br>A<br>B<br>B<br>B<br>A<br>A<br>A<br>A<br>A<br>A                                    | blue<br>brown<br>green<br>blue<br>blue<br>brown<br>blue<br>green<br>blue<br>blue<br>blue<br>blue                     | blonde<br>brown<br>black<br>brown<br>red<br>blonde<br>black<br>blonde<br>blonde<br>black<br>blonde                          | 70<br>65<br>70<br>73<br>69<br>63<br>72<br>69<br>66<br>70<br>71<br>65                        | 144<br>185<br>165<br>161<br>270<br>212<br>187<br>133<br>179<br>180<br>174<br>175                      | 35<br>50<br>58<br>45<br>32<br>33<br>61<br>66<br>39<br>45<br>43<br>43                                 | 249<br>300<br>293<br>362<br>362<br>308<br>320<br>288<br>284<br>285<br>288<br>284<br>285<br>288                                    | 237<br>249<br>300<br>293<br>279<br>371<br>308<br>320<br>268<br>284<br>284<br>295<br>288<br>295                                           |
| 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                             | 6 female<br>6 female<br>6 female<br>7 female<br>8 female<br>9 female<br>9 female<br>1 male<br>2 male<br>2 male<br>4 male<br>4 male<br>4 male                                                                                                                                                                                                                                                                                                                                                  | A<br>A<br>A<br>B<br>B<br>B<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A                          | blue<br>brown<br>green<br>blue<br>blue<br>brown<br>blue<br>green<br>blue<br>brown<br>blue<br>brown                   | blonde<br>brown<br>black<br>brown<br>red<br>blonde<br>black<br>blonde<br>black<br>blonde<br>black<br>blonde<br>black        | 70<br>65<br>70<br>73<br>69<br>63<br>72<br>69<br>66<br>70<br>70<br>71<br>65<br>61            | 144<br>185<br>165<br>161<br>270<br>212<br>187<br>133<br>179<br>180<br>174<br>175<br>215               | 32<br>35<br>50<br>58<br>45<br>32<br>33<br>61<br>66<br>39<br>45<br>43<br>45<br>43<br>57<br>20         | 249<br>300<br>293<br>279<br>362<br>308<br>320<br>268<br>284<br>295<br>288<br>297<br>298                                           | 237<br>249<br>300<br>293<br>279<br>371<br>308<br>320<br>268<br>284<br>295<br>288<br>295<br>288<br>297<br>296                             |
| 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                             | a         female           b         female           c         male           c         male           male         male           male         male           male         male           male         male           male         male           male         male | A<br>A<br>A<br>A<br>B<br>B<br>B<br>B<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A | blue<br>brown<br>green<br>green<br>blue<br>brown<br>blue<br>green<br>blue<br>brown<br>blue<br>brown                  | blonde<br>brown<br>black<br>brown<br>red<br>blonde<br>black<br>blonde<br>black<br>blonde<br>blonde<br>blonde<br>blonde      | 70<br>65<br>70<br>73<br>69<br>63<br>72<br>69<br>66<br>70<br>71<br>65<br>61<br>62            | 144<br>185<br>165<br>270<br>212<br>187<br>133<br>179<br>180<br>174<br>175<br>215<br>190               | 355<br>500<br>588<br>455<br>322<br>333<br>61<br>669<br>399<br>455<br>433<br>57<br>200<br>360         | 249<br>300<br>293<br>302<br>308<br>320<br>268<br>284<br>295<br>288<br>295<br>288<br>297<br>296<br>288                             | 237<br>249<br>300<br>293<br>279<br>371<br>308<br>320<br>268<br>288<br>284<br>295<br>288<br>297<br>296<br>288                             |
| 3<br>4<br>5<br>6<br>7<br>7<br>8<br>8<br>5<br>5<br>5<br>10<br>11<br>11<br>12<br>13<br>13<br>14<br>11<br>12<br>13<br>14<br>11<br>17<br>17 | 6         female           6         female           6         female           7         female           8         female           9         female           9         female           1         female           2         male           3         male           4         male           5         male           6         male           7         male                                                                                                                           | A<br>A<br>A<br>B<br>B<br>B<br>B<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>B           | blue<br>brown<br>green<br>blue<br>blue<br>brown<br>blue<br>green<br>blue<br>brown<br>blue<br>brown<br>green<br>brown | blonde<br>brown<br>black<br>brown<br>red<br>blonde<br>blonde<br>blonde<br>brown<br>black<br>blonde<br>brown<br>black<br>red | 70<br>65<br>70<br>73<br>69<br>63<br>72<br>69<br>66<br>70<br>71<br>65<br>61<br>1<br>62<br>74 | 144<br>185<br>165<br>161<br>270<br>212<br>187<br>133<br>179<br>180<br>174<br>175<br>215<br>190<br>202 | 352<br>365<br>50<br>58<br>45<br>32<br>33<br>61<br>66<br>39<br>45<br>43<br>57<br>20<br>36<br>36<br>29 | 249<br>300<br>293<br>279<br>362<br>308<br>320<br>268<br>284<br>284<br>295<br>288<br>297<br>296<br>288<br>297<br>296<br>288<br>305 | 249<br>249<br>300<br>293<br>279<br>371<br>308<br>320<br>268<br>288<br>288<br>295<br>288<br>297<br>296<br>288<br>297<br>296<br>288<br>305 |

5. Create another new variable that will contain codes.

STRATTISTICA

- 6. Sort the data file.
- 7. Rearrange the order of the variables.
- 8. Rank variables.





### **Importing Data**





| s. xls       | OK                               |
|--------------|----------------------------------|
|              |                                  |
| 1 🖨 to 150 🖨 | Cancel                           |
| 1 🗣 to 500 🖨 |                                  |
|              | 1 1 + to 150 +<br>1 1 + to 500 + |

### □Use the Clipboard

### □ File – Open



# **STATISTICA** Query

### **STATISTICA** provides access to most databases (including many large system databases such as Oracle, Sybase, etc.) via **STATISTICA** Query



STRATUSTRICA



# **Exporting Data**

To export, select **Save As** from the **File** menu to display the **Save As** dialog.

A wide variety of files is available in the **Save as type** drop-down list (STATISTICA spreadsheet, Excel, SPSS (Data and Portable files), SAS (Data and Transport files), JMP, Minitab, dBASE, Text, HTML, Lotus Worksheets, Quattro Pro/DOS, and PDF).



STRATUSIUGA



#### STATISTICA

### **Random Subsets**

STATISTICA includes a facility that allows the user to randomly sample any dataset in order to create a subset dataset for analysis.



#### A StatSoft

### **Case Selection Conditions**

If you only want to analyze a specific subset of your data, you can use case selection conditions.

Cases can be selected in the spreadsheet or for a specific graph or analysis.

| Spreadsheet C                 | Case Selection Conditions                                                                                                                                                                                                                                                                                                          | <u>र</u>                 |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Selections D                  | isplay   Subset/Random Sampling                                                                                                                                                                                                                                                                                                    | 1                        |
|                               |                                                                                                                                                                                                                                                                                                                                    |                          |
| C <u>A</u> ll<br>⊙ Spec<br>E) | Analysis/Graph Case Selection Conditions         O       Use current Spreadsheet selection conditions         O       Use selection conditions for this Analysis/Graph only                                                                                                                                                        | <u> </u>                 |
|                               | Enable Selection Conditions     Include cases     Clear All                                                                                                                                                                                                                                                                        | ОК                       |
| or case                       | © <u>A</u> ∥                                                                                                                                                                                                                                                                                                                       | Cancel                   |
| Exclude (                     | Specific, selected by:     By Expression:                                                                                                                                                                                                                                                                                          | <u>(</u> ☐) <u>O</u> pen |
| byex                          |                                                                                                                                                                                                                                                                                                                                    | <u>ave As</u>            |
| or case                       |                                                                                                                                                                                                                                                                                                                                    |                          |
|                               | Exclude cases (from the set of cases defined in the "Include cases' section)                                                                                                                                                                                                                                                       |                          |
| By case num<br>By expressio   | By expregsion:                                                                                                                                                                                                                                                                                                                     |                          |
| [ <del>]]</del>               | or case number: 7, 10:12                                                                                                                                                                                                                                                                                                           |                          |
|                               | By case number:     Enter case numbers and/or ranges. Example: 1, 3, 5-12       By expression:     Use the same operators, functions, and syntax as in the spreadsheet formulas:       Use variable names or v1, v2     v0 is the case number (v0×4 means cases 1-<br>Examples: (a) v1=0 OR age>18 (b) gender="MALE AND v4↔(v5+v6) | 3)                       |

STLATETSTETCA





### **Case States**

Assign case states to cases in order to customize the appearance of points in graphical displays

Assign unique point markers, or specify cases as *Excluded*, *Hidden*, *Labeled* or *Marked*.







### **Options**

| Options                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                | ? ×       |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------|--|--|--|--|
| Reports       Graphs 1       Graphs 2       Spreadsheets       Import       Data Miner       In-Place Database         General       Analyses/Graphs       Output Manager       Custom Lists       Configuration Manager       Macros (         Startup options: <ul> <li>Maximize STATISTICA window</li> <li>Open most recently used datafile</li> <li>Create new spreadsheet</li> <li>Do not open or create a document</li> <li>Display the welcome dialog</li> <li>Use metric measurements</li> <li>Display warning when opening STATISTICA with event Macros enabled</li> <li>Display warning when opening a document with event Macros</li> <li>Start another Analysis of the same type without asking if that is what you intend</li> <li>Computation of percentiles:</li> <li>Empirical Distribution Function w/Average</li> <li>File location</li> <li>Remember directories when opening or saving files</li> </ul> | Interface Bro<br>SVB) Programs | Workbooks |  |  |  |  |
| Default location:       C:\Documents and Settings\Kelly Ridgway\My Docume       Browse       Heset         Auto Save       Save recovery info every       10       minutes.       Disable         Recovery path:       C:\Documents and Settings\Kelly Ridgway\Application       Browse       Reset         Offer to suspend the auto-saving feature if the file size is larger than       5       megabytes         When a document exceeds the threshold size:       •       •       Do not save         WebSTATISTICA URL:       •       •       •       •                                                                                                                                                                                                                                                                                                                                                               |                                |           |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ОК                             | Cancel    |  |  |  |  |

28



# **Descriptive Statistics**

The Basic Statistics and Tables module gives you more depth and control over the output than statistics of block data.

Select *Basic Statistics/Tables* from the *Statistics* menu.



STRATRISTRICA



# **Specifying an Analysis**

- 1. Use Characteristics.sta.
- 2. Select Descriptive Statistics
- 3. Click *Variables* and select the variables for the analysis



STRATRISTRICA



# **Reviewing Results**

#### Click the Summary button to produce the results spreadsheet with the default selection of statistics

5. The *Normality* tab of the *Descriptive Statistics* dialog contains many of the most common tools for checking normality assumptions

| Workbook1* - Des | criptive Statist | ics (Chara    | acteristics.  | sta)        |               |          | _ 🗆 × |
|------------------|------------------|---------------|---------------|-------------|---------------|----------|-------|
| Workbook1*       |                  | Descripti     | ve Statistic  | s (Characte | eristics.sta) |          |       |
|                  | Variable         | Valid N       | Mean          | Minimum     | Maximum       | Std.Dev. |       |
| Descripti        | Wellness 1       | 100           | 49.37074      | 19.55478    | 79.60917      | 11.84380 |       |
|                  | Wellness 2       | 100           | 60.75626      | 35.02135    | 87.36024      | 11.85713 |       |
|                  | Test Item 1      | 100           | 9.67000       | 5.00000     | 14.00000      | 3.04861  |       |
|                  | Test Item 2      | 100           | 19.27000      | 15.00000    | 24.00000      | 3.08746  |       |
|                  | Test Item 3      | 100           | 14.23000      | 10.00000    | 19.00000      | 2.83860  |       |
|                  |                  |               |               |             |               |          | ▼     |
|                  |                  |               |               |             |               |          | Þ     |
|                  | Descriptive      | Statistics (C | haracteristic | s.sta)      |               |          |       |

STRATETISTECA

| Workbook1* - Freq  | uency table: Height (in) (C                                                                                            | haracte                                                                                                                        | ristics.sta)   |          |          |          |
|--------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------|----------|----------|----------|
| Basic Statistics/T |                                                                                                                        | Frequency table: Height (in) (Characteristics.sta)<br>K-S d=.09198, p>.20; Lilliefors p<.05<br>Shapiro-Wilk W=.97272, p=.03582 |                |          |          |          |
| Frequenc           |                                                                                                                        | Count                                                                                                                          | Cumulative     | Percent  | Cumul %  | % of all |
|                    | Category                                                                                                               |                                                                                                                                | Count          | of Valid | of Valid | Cases    |
|                    | 55.00000 <x<=60.00000< th=""><th>2</th><th>2</th><th>2.00000</th><th>2.0000</th><th>2.00000</th></x<=60.00000<>        | 2                                                                                                                              | 2              | 2.00000  | 2.0000   | 2.00000  |
|                    | 60.00000 <x<=65.00000< th=""><th>19</th><th>21</th><th>19.00000</th><th>21.0000</th><th>19.00000</th></x<=65.00000<>   | 19                                                                                                                             | 21             | 19.00000 | 21.0000  | 19.00000 |
|                    | 65.00000 <x<=70.00000< th=""><th>60</th><th>81</th><th>60.00000</th><th>81.0000</th><th>60.00000</th></x<=70.00000<>   | 60                                                                                                                             | 81             | 60.00000 | 81.0000  | 60.00000 |
|                    | 70.00000 <x<=75.00000< th=""><th>19</th><th>100</th><th>19.00000</th><th>100.0000</th><th>19.00000</th></x<=75.00000<> | 19                                                                                                                             | 100            | 19.00000 | 100.0000 | 19.00000 |
|                    | Missing                                                                                                                | 0                                                                                                                              | 100            | 0.00000  |          | 0.00000  |
|                    | <b> </b> •                                                                                                             |                                                                                                                                |                |          |          |          |
|                    | Frequency table: Height (ir                                                                                            | n) (Charac                                                                                                                     | teristics.sta) |          |          | ••       |



#### STATISTICA

### **Example 3: Descriptive Stats**



- 1. Open the *Characteristics.sta* data file.
- 2. From the *Statistics* menu, select *Basic Statistics/Tables*, then select *Descriptive Statistics*.

#### M StatSoft



# Example Steps



3. Click the *Variables* button and highlight variables *4-8.* 

STRATRISTRI

- 4. Click the *Summary* button.
- Resume the analysis by clicking the *Descriptive Statistics* button on the *Analysis* bar, then click the *Histograms* button.

### M StatSoft



# Example Steps



📅 Normal P-Plot: Height (in) 📅 Normal P-Plot: Weight (lb) 📅 Normal P-Plot: Age (yr)

 Resume the analysis and click on the *Advanced* tab. Select only the statistics shown at left.

STRATTISTRIC

- Click the Summary: Descriptive statistics button
- 8. Resume the analysis and on the *Prob.& Scatterplots* tab, click the *Normal probability plot* button.

4





STRATTISTRICA

Correlation is a measure of the relationship between two or more variables. The measurement scales used should be at least interval scales. Correlation coefficients can range from -1.00 to +1.00. The value of -1.00 represents a perfect negative correlation while a value of +1.00 represents a perfect positive correlation. A value of 0.00 represents a lack of correlation.



#### STATISTICA

### **Example 4: Correlations**



 Continue using the Characteristics.sta data file. Select Basic Statistics/Tables from Statistics menu, then select Correlation matrices and click the OK button to display the Product-Moment and Partial Correlations dialog.


# Example Steps



 Click the One variable list button and select variables 4-11. Click OK.

SILATUSILIC

- 3. Click the *Summary* button.
- Resume analysis. Click the Options tab. Select the Display r, p-levels, and N's option button. Click Summary
- 5. Resume analysis. On the *Quick* tab, click *Scatterplot matrix for variables*. Select variables *4-6* and click *OK*.





### t-tests

- There are four different types of t-tests in the Basic Statistics and Tables module. The following examples illustrate when to use each test.
- 1. Independent, by groups
- 2. Independent, by variables
- 3. Dependent samples
- 4. Single sample



STATISTICA

## Example 5: t-test Independent, By Groups



When one variable contains codes for two groups and the second variable contains measurements or values of a dependent variable, one should use a t-test by groups to compare the group means.



# Example Steps

| T-Test for Independent Samples by Groups: Characteristics.sl                                                                                         | ta ?_×                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| ☑ Variables:       Dependent: Height (in)         Grouping:       Gender                                                                             |                                         |
| Code for Group 1: "male" Code for Group 2: "female"                                                                                                  |                                         |
| Quick Advanced Options                                                                                                                               | 🔊 Options 🔻                             |
| Summary: <u>I</u> -tests                                                                                                                             | CASES S                                 |
| <u>∎esē</u> <u>B</u> ox & whisker plot                                                                                                               | □ Weighted<br>moments                   |
|                                                                                                                                                      | DF =                                    |
| Workbook1.stw* - T-tests; Grouping: Gender (Characteristics.sta)                                                                                     |                                         |
| Workbook1.stw*     T-tests; Grouping: Gender (Characteristics.sta)       Gasc Statistics/T     Group 1: male       Group 1: male     Group 2: female | Ă                                       |
| Mean Mean t-value df p Valid N<br>Variable male female                                                                                               | Valid N Std.Dev. Std<br>female male fer |
| Height (in) 67.78846 68.00000 -0.294428 98 0.769054 52                                                                                               | 48 3.488561 3.6                         |
|                                                                                                                                                      |                                         |
| T-tests; Grouping: Gender (Characteristics.sta)                                                                                                      |                                         |

 Use Characteristics.sta. Select Statistics-Basic Statistics/Tables, then, select t-test, independent, by groups and click OK.

PAJPI (SIPI (C)A

- 2. Click *Variables*, select *Height* (*in*) as the dependent variable, and *Gender* as the grouping variable. Click *OK*.
- 3. Click Summary.





### Example 6: t-test, Independent, By Variables



When the two groups to be compared reside in separate variables, it is more appropriate to choose a t-test by variables.



## **Example Steps**

| T-Test for Independent Samples by V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ariables: Character ?                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Image: Second contraction of the second contraction o | Cancel                                                                                                      |
| Quick Options                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Deptions V                                                                                                  |
| Summary: <u>1</u> -tests       Box & whisker plot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DF =                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Nonstandard data<br>arrangement: It is<br>assumed that each<br>variable contains the<br>data for one group. |

| Workbook1.stw<br>- Masic Statistics/Tab<br>- Masic Tutest for indeps |                                            | T-test for Independent Samples (CharacteristicsHe<br>Note: Variables were treated as independent samples |          |           |    |          |         |
|----------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------|----------|-----------|----|----------|---------|
| T test for Inc                                                       |                                            | Mean                                                                                                     | Mean     | t-value   | df | p        | Valid N |
| 1-test for the                                                       | Group 1 vs. Group 2                        | Group 1                                                                                                  | Group 2  |           |    |          | Group 1 |
|                                                                      | Male Height vs. Female Height              | 67.78846                                                                                                 | 68.00000 | -0.294428 | 98 | 0.769054 | 5,      |
|                                                                      |                                            |                                                                                                          |          |           |    |          | T       |
|                                                                      | [•]                                        |                                                                                                          |          |           |    |          | •       |
|                                                                      | ,<br>T-test for Independent Samples (Chara | acteristicsHeig                                                                                          | ght.sta) |           |    |          |         |

### 1. Use *CharacteristicsHeight.sta*.

- 2. On the *Basic Statistics and Tables* dialog, select *t-test, independent, by variables* and click *OK*.
- 3. Select *Male Height* as the first variable and *Female Height* as the second variable.
- 4. Click Summary.









### Example 7: t-test, Dependent Samples



If the two groups being compared were measured twice on the same variable, then a considerable portion of the within-group variation can be attributed to the individual differences between measurements on the same subjects.



# Example Steps

| <mark> </mark>                                                                                          | pendent Samples: Characte<br> <br> <br> tem 1                                                                                           | ristics.sta ? _ X<br>Summary<br>Cancel |                  |
|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------|
| Workbook1.stw* - T-test for Der                                                                         | pendent Samples (Characteristics sta)                                                                                                   |                                        |                  |
| Workbook1.stw <sup>*</sup> Basic Statistics/T     Garage T-test for dep     T-test for dep     Variable | T-test for Dependent Samples (Charact<br>Marked differences are significant at p       Mean     Std.Dv.       N     Diff.       S     S | c.05000<br>td.Dv. t df p<br>Diff.      |                  |
| Workbook1.stw* - Bo                                                                                     | <b>x &amp; Whisker Plot</b><br>Box & Whisker Ple                                                                                        | ot.                                    | <u>-   0   ×</u> |
| T-test for dep<br>T-test for dep<br>Box & W                                                             | 2 Test Item 1 vs. Test It                                                                                                               | em 2                                   |                  |
| 2                                                                                                       | o                                                                                                                                       | Ē.                                     |                  |
| 1                                                                                                       | 8                                                                                                                                       |                                        |                  |
| 1                                                                                                       | 6                                                                                                                                       |                                        |                  |
|                                                                                                         | 2                                                                                                                                       |                                        |                  |
| 1                                                                                                       |                                                                                                                                         |                                        |                  |
|                                                                                                         | 8 Test lien 1 Test                                                                                                                      | tem 2                                  | E<br>.96*SE      |
|                                                                                                         | T-test for Dependent Samples (Characteristics.s                                                                                         | ta) 📅 Box & Whisker Plot               |                  |

 Use Characteristics.sta. On the Basic Statistics and Tables dialog, select t-test, dependent samples.

CASTISSIII (CA

- 2. Select *Test Item 1* as the first variable and *Test Item 2* as the second variable.
- 3. Click the *Summary* button.
- 4. Resume the analysis. Click the **Box & whisker plots** button.



STATISTICA

### **Example 8: t-test, Single Sample**



Using the single sample t-test, you can compare the mean of a particular variable to a specified value.



# Example Steps



PAD MISSINICIA

| 🔀 T-Test for Single Means: Characteristics.sta 👘 | ?_×                 |
|--------------------------------------------------|---------------------|
| Variables: Weight (lb)                           | Summary             |
| Quick Advanced Options                           | Cancel              |
| Summary: <u>T</u> -tests                         | 🔊 Options 🔻         |
| Reference values                                 |                     |
| 📀 Test <u>a</u> ll means against: 🛛 200 🚔        |                     |
| C Test means against different                   | CRSES S             |
|                                                  | Weighted<br>moments |
|                                                  | _ DF =              |
| <u>∎o</u> ox & whisker plot                      | © W-1 O N-1         |
|                                                  | <u>M</u> D deletion |
|                                                  | C Casewise          |
|                                                  | Pairwise            |
|                                                  | Pairwise            |

- Use Characteristics.sta. On the Basic Statistics and Tables dialog, Select t-test, single sample.
- 2. Use Weight (lb) as variable.
- 3. Select the *Test all means against* option button and enter *200* into the adjacent box.

#### M StatSoft'



# Example Steps





4. Click the Summary button.

SILAILISILICA

 Resume the analysis. Click the *Box & whisker plot* button. Select *Mean/SE/1.96\*SE* in the *Box-whisker Type* dialog box. Click *OK*.

STATISTICA

### **Breakdown and One-way ANOVA**

- Typically used as an EDA Technique, breakdowns answer the question, "Are the groups different regarding the dependent variable?"
- Examine group means with one-way ANOVA.
- Investigate variation with homogeneity of variance tests
- Conduct a variety of Post-hoc tests

#### STRATISTICA

### Example 9: Breakdowns and One-way ANOVA



 Continue using the Characteristics.sta data file.
 Select Breakdown & Oneway ANOVA from the Basic Statistics and Tables (Startup Panel), and click OK.

#### M StatSoft



## Example Steps

| Statistics by Groups (F                                                                                                                                                                                                                                                                                                                                                                                                                                    | }reakdo <mark>wn)</mark> : Ch                                                                                                                                     | aracteristics.sta                                                                                                                                                                                   | 1                                                                                                                                                                                 | ?_×                                                                                                                                                                                                                |              |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|--|
| Individual tables Lists of ta                                                                                                                                                                                                                                                                                                                                                                                                                              | ibles                                                                                                                                                             |                                                                                                                                                                                                     |                                                                                                                                                                                   | OK                                                                                                                                                                                                                 |              |  |  |  |
| <u>G</u> rouping variables:                                                                                                                                                                                                                                                                                                                                                                                                                                | Not selected                                                                                                                                                      |                                                                                                                                                                                                     |                                                                                                                                                                                   | Cancel                                                                                                                                                                                                             |              |  |  |  |
| Dependent variables: none                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                   |                                                                                                                                                                                                     |                                                                                                                                                                                   |                                                                                                                                                                                                                    |              |  |  |  |
| Output Tables                                                                                                                                                                                                                                                                                                                                                                                                                                              | Statistics                                                                                                                                                        |                                                                                                                                                                                                     | s                                                                                                                                                                                 |                                                                                                                                                                                                                    |              |  |  |  |
| Summary table of mea                                                                                                                                                                                                                                                                                                                                                                                                                                       | ns   🔽 <u>N</u><br>is   🔽 Std. de                                                                                                                                 | evs 🗖                                                                                                                                                                                               | S <u>u</u> ms – –<br>Variances – Г                                                                                                                                                | - Weighted                                                                                                                                                                                                         |              |  |  |  |
| Within-group correlation                                                                                                                                                                                                                                                                                                                                                                                                                                   | ns 🛛 🗖 Min & r                                                                                                                                                    | ma <u>x</u>                                                                                                                                                                                         | Median &                                                                                                                                                                          | DF =                                                                                                                                                                                                               |              |  |  |  |
| Select up to 6 lists of grouping variabl                                                                                                                                                                                                                                                                                                                                                                                                                   | es:                                                                                                                                                               |                                                                                                                                                                                                     |                                                                                                                                                                                   |                                                                                                                                                                                                                    | ? ×          |  |  |  |
| 1-Gender         1-Gender           2-Eye Color         3-Hair Color           3-Hair Color         3-Hair Color           4-Height (in)         4-Height (in)           5-Weight (lb)         5-Weight (lb)           6-Age (yr)         7-Wellness 1           8-Wellness 2         8-Wellness 2           9-Test Item 1         9-Test Item 1           10-Test Item 2         10-Test Item 3           12-Test Total (Avg)         12-Test Total (Avg) | 1-Gender<br>2-Eye Color<br>8-Haight (in)<br>5-Weight (ib)<br>6-Age (vr)<br>7-Weilness 1<br>8-Weilness 2<br>9-Test Item 3<br>10-Test Item 3<br>12-Test Total (Avg) | 1-Gender<br>2-Eye Color<br>3-Hair Color<br>4-Height (in)<br>5-Weight (ib)<br>6-Age (yr)<br>7-Wellness 1<br>8-Wellness 2<br>9-Test Item 1<br>10-Test Item 2<br>11-Test Item 3<br>12-Test Total (Avg) | 1-Gender<br>2-Eye Color<br>3-Hair Color<br>4-Height (in)<br>5-Weight (ib)<br>6-Age (yr)<br>7-Weilness 1<br>8-Weilness 2<br>9-Test Item 3<br>10-Test Item 3<br>12-Test Total (Avg) | 1-Gender<br>2-Eye Color<br>3-Hai Color<br>4-Height (in)<br>5-Weight (lb)<br>6-Age (yr)<br>7-Wellness 1<br>8-Wellness 1<br>8-Wellness 2<br>9-Test Item 1<br>10-Test Item 3<br>11-Test Item 3<br>12-Test Total (Avg) | OK<br>Cancel |  |  |  |
| Spread Zoom Spread Zoom<br>List1: List2:                                                                                                                                                                                                                                                                                                                                                                                                                   | Spread Zoom<br>List3:                                                                                                                                             | Spread Zoom<br>List4:                                                                                                                                                                               | Spread Zoom<br>List5:                                                                                                                                                             | Spread Zoom<br>List6:                                                                                                                                                                                              |              |  |  |  |
| 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                                                                                                                                 |                                                                                                                                                                                                     |                                                                                                                                                                                   |                                                                                                                                                                                                                    |              |  |  |  |

2. On the *Statistics by Groups* (*Breakdown*) dialog, select *List of tables* tab, and click *Grouping variables*. For *List1* highlight *Gender*, for *List2* highlight *Eye Color*, and for *List3* highlight *Hair Color*.

MAND MISSIPIC

3. Click **OK**. Click **Dependent variables**. Highlight the *Height (in)* and *Weight (lb)* variables and click **OK**.



# Example Steps



CASPI (SSPI) (C)

| Breakdown resi | Brea   | akdown Tabl<br>N=10                                                                           | e of Descript<br>)0 (No missir                                                 | ive Statistics<br>Ig data in dep | (Characteris<br>). var. list) | tics.sta)          | _            |
|----------------|--------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------|-------------------------------|--------------------|--------------|
| Breakdown      | Gender | Eye Color                                                                                     | Hair Color                                                                     | Height (in)<br>Means             | Height (in)<br>N              | Height (in)<br>Sum | He<br>S      |
|                | male   | blue                                                                                          | brown                                                                          | 66.92857                         | 14                            | 937.000            |              |
|                | male   | blue                                                                                          | red                                                                            | 67.28571                         | 7                             | 471.000            | :            |
|                | male   | blue                                                                                          | black                                                                          | 70.75000                         | 4                             | 283.000            |              |
|                | male   | blue                                                                                          | blonde                                                                         |                                  | 0                             |                    |              |
|                | male   | green                                                                                         | brown                                                                          | 69.66667                         | 3                             | 209.000            |              |
|                | male   | green                                                                                         | red                                                                            | 68.00000                         | 5                             | 340.000            | 1            |
|                | male   | green                                                                                         | black                                                                          | 67.00000                         | 5                             | 335.000            |              |
|                | male   | green                                                                                         | blonde                                                                         |                                  | 0                             |                    |              |
|                | male   | brown                                                                                         | brown                                                                          | 67.33333                         | 3                             | 202.000            |              |
|                | male   | brown                                                                                         | red                                                                            | 67.00000                         | 2                             | 134.000            | -            |
|                |        |                                                                                               | 1                                                                              |                                  |                               |                    | $\mathbf{F}$ |
|                |        | ndividual table:<br><u>V</u> ariab<br>Dependent: I<br>Grouping: I<br><u> <u>Codes</u> for</u> | s Lists of table<br>les<br>Height (in)-Weig<br>Hair Color<br>r grouping varial | is<br>ht (lb)<br>ples none       |                               |                    |              |
|                |        |                                                                                               |                                                                                |                                  |                               |                    |              |

4. On the List of tables tab, select Sums, Variances, Std. devs, Min & max and N in the Statistics section. Under Output tables, select Summary table of means. Click OK.

5. Resume analysis. Specify the *Individual tables* tab as shown. Click *OK*.

ise

#### StatSoft<sup>®</sup>



## **Example Steps**

> 12.875 0.720260 0.542287 96 1322.240 0.646114 0.587280



STRATTISTUCA

| Statistics by Groups -                    | - Results: Cha             | racteristics.sl            | ta                  | li i            | ? _ ×               |                    |                   |                       |                 |
|-------------------------------------------|----------------------------|----------------------------|---------------------|-----------------|---------------------|--------------------|-------------------|-----------------------|-----------------|
| DEPENDENT: 2 varial<br>GROUPING: 1-Hair ( | bles: Heigh<br>Col(4): bro | t (in) Weig<br>wn red blac | ht (lb)<br>k blonde |                 | En ±                |                    |                   | 6                     | . Clio<br>dia   |
| Quick Descriptives AN                     | IOVA & tests C             | iorrelations   Pos         | st-hoc              | Su (Characteri  | mmary<br>stics.sta) |                    |                   | <mark>ิส</mark>       | . Clic          |
| Workbook1                                 | 1                          |                            |                     |                 |                     |                    |                   | 7                     |                 |
| 🗓 🚊 🖂 Basic Statistic                     |                            | Breakdown                  | Table of Des        | criptive Statis | tics (Charac        | teristics.sta)     | A.                | ill o                 | Dro             |
| 🕞 🚊 🔄 Breakdow                            |                            | N                          | l=100 (No m         | issing data in  | i dep. var. lis     | t)                 |                   |                       | . 116           |
| Break                                     | Hair Color                 | Height (in)                | Height (in)         | Height (in)     | Height (in)         | Height (in)        | Height (in)       |                       |                 |
| Break                                     | ļ                          | Means                      | N                   | Sum             | Std.Dev.            | Variance           | Minimum           |                       | kov             |
|                                           | brown                      | 68.04348                   | 46                  | 3130.000        | 3.189960            | 10.17585           | 58.00000          |                       | ney             |
|                                           | red                        | 67.13636                   | 22                  | 1477.000        | 3.907203            | 15.26623           | 57.00000          |                       |                 |
|                                           | black                      | 68.44444                   | 27                  | 1848.000        | 3.826359            | 14.64103           | 61.00000          |                       | _               |
|                                           | blonde                     | 66.80000                   | 5                   | 334.000         | 4.381780            | 19.20000           | 61.00000          |                       | Δn              |
|                                           | All Grps                   | 67.89000                   | 100                 | 6789.000        | 3.572892            | 12.76556           | 57.00000          |                       |                 |
|                                           |                            |                            |                     |                 |                     |                    | ▼                 |                       |                 |
| Lan d                                     | Breakdow                   | n Table 🔠 🖤                | orkbook1* - #       | Analysis of Va  | riance (Char        | acteristics.sta    | 1]                |                       |                 |
|                                           |                            | 🔁 🗠                        | orkbook1*           |                 |                     | Ana                | lveie of Variand  | o (Chara              | ctarietice eta) |
|                                           |                            | ⊡··∰                       | Basic Statistic     |                 |                     | Mark               | od offorte aro e  | e (Chara<br>ignifican | totn < 05001    |
|                                           |                            | Ē                          | 🔄 Breakdow          | 1               | 22                  | df M               |                   | df                    | MS              |
|                                           |                            |                            | Break               | Variable        | Effect              | Effect Effe        | o oo<br>oot Error | Error                 | Error           |
|                                           |                            |                            | Break               | Hoight (in)     | 27.819              |                    | 2731 1236 C       | 96                    | 12,875,0.7      |
|                                           |                            |                            | - Analy:            | Woight (lh)     | 27.013              | 3 954              | 2731 1230.0       | 90                    | 12:070 0:73     |
|                                           |                            |                            |                     |                 | 2302.333            | 5 054.             | 5170 120900.0     | 30                    | 1322.240 0.04   |
|                                           |                            |                            |                     | <u> </u>        |                     |                    |                   |                       |                 |
|                                           |                            | •                          | E F                 | Analysis (      | of Variance (Cha    | aracteristics.sta) |                   |                       |                 |

- 6. Click **OK** to display results dialog.
- 7. Click the **Summary** button
- 8. Press CTRL+R on your keyboard, then click the

#### Analysis of Variance button





# Example Steps



 Resume the analysis. Click the *Categorized box & whisker plot* button. Select both dependent variables and click *OK*.

STRATITISTRIC,

The **ANOVA & tests** tab and the **Post-hoc** tab are also available if you would like to further test for equal variances or to see which levels differ from each other (via post-hocs).



## **Nonparametric Methods**

STRATTISTUCIA

- Used when the researcher knows nothing about the parameters of the variable of interest in the population or in cases where the usual parametric assumptions do not hold
- Do not rely on the estimation of parameters

#### STRATISTICA

### Example 10: Descriptives & Percentiles



#### **Ordinal descriptive statistics**

computes a wide variety of measures of location (mean, median, mode, etc.) and dispersion (variance, average deviation, quartile range, etc.) to provide a more "complete picture" of your data

For this example, use *Characteristics.sta*.



Example Steps

| Monparam          | etric Statist                                                        | ics: Char                    | acteristi              | cs.sta      |                      | ?_×                  |                                     |          |
|-------------------|----------------------------------------------------------------------|------------------------------|------------------------|-------------|----------------------|----------------------|-------------------------------------|----------|
| Quick             |                                                                      |                              |                        | 1           |                      | OK)                  |                                     |          |
| 🔜 🛗 🛄 🖓 🖸 🕯       | escriptive S                                                         | tatistics:                   | Charac                 | teristics.  | sta                  |                      | ?.                                  | -   ×    |
|                   | uick  <br><mark>⊇ ⊻</mark> ariable<br>Compute perc<br><u>F</u> irst: | es: Te<br>entile bour<br>25. | st Item 1-7<br>ndaries | Fest Item 3 | }                    |                      | Su <u>m</u> ma<br>Cancel<br>Options | ıy<br>•  |
|                   | <u>S</u> econd:                                                      | 75.                          | <b>▲</b>               |             |                      | SELECT<br>CRSES      |                                     | <u>w</u> |
| Workbook1.stw*    | - Descriptive                                                        | Statistics (                 | Character              | istics.sta) |                      |                      | _ 🗆 ×                               | cs       |
| 📉 Workbook Listw* |                                                                      | D                            | escriptive             | Statistics  | (Character           | istics.sta)          |                                     | ics      |
| Nonparam          | Variable                                                             | Mean                         | Valid N                | Median      | Mode                 | Frequency<br>of Mode | Min                                 | c        |
|                   | Test Item 1                                                          | 9.67000                      | 100                    | 10.00000    | 14.00000             | 15                   | 5.                                  |          |
|                   | Test Item 2                                                          | 19.27000                     | 100                    | 19.00000    | 15.00000<br>multiple | 15                   | 15.                                 |          |
|                   | rest item 5                                                          | 14.23000                     | 100                    | 14.00000    | multiple             |                      | 10.                                 |          |
|                   |                                                                      |                              |                        |             |                      |                      | •                                   |          |
| <u>∢</u>          | Descriptive                                                          | Statistics (Ch               | aracteristics          | sta)        |                      |                      |                                     | 1        |

 From the Statistics menu, select Nonparametrics to display the Nonparametric Statistics (Startup Panel).

CAJNISINI(C)

 Choose Ordinal descriptive statistics (median, mode, ...) and click OK. On the Descriptive Statistics dialog, click Variables and select Test Item 1, Test Item 2, and Test Item 3. Click OK.

3. Click the *Summary* button.









4. Press CTRL+R and click the Box & whisker plot for all variables button. On the Box-Whisker Type dialog, select the Median/Quart.
/Range option button and click OK.

CASPICSSICIC

 Resume the analysis. Enter 10 and 90 into the *First* and *Second* boxes, respectively, under *Compute percentile boundaries*. Click *Summary*.



# Example 11: Comparing 2 Independent Samples (Groups)



Nonparametric alternatives for the t-test for independent samples available in *STATISTICA* are the Wald-Wolfowitz runs test, the Mann-Whitney U test, and the Kolmogorov-Smirnov two sample test.

## For this example, use *Characteristics.sta*.





# Example Steps

| Comparing Two                                      | Groups: Ch             | naracteristi    | cs.sta               | ? _ )                    | < l                  |            |
|----------------------------------------------------|------------------------|-----------------|----------------------|--------------------------|----------------------|------------|
|                                                    | ]                      |                 |                      | -W U <u>t</u> est        | ]                    |            |
| Dependent: Test It<br>Grouping: Gende              | em 1<br>er             |                 | Ca                   | ancel                    | L                    |            |
| Codes for: Group <u>1</u> :                        | "male"                 | Group           | <u>2</u> : ["female  | '                        |                      |            |
| Quick                                              |                        |                 | 🔊 🛛                  | Iptions 🔻                |                      |            |
| Wald-\                                             | Volfowit <u>z</u> runs | test            | SELECT<br>CRSES S    | 6 ⊻                      |                      |            |
| Kolmogorov-                                        | Smirnov two-s          | ample test      | Double-cli           | ck on the                |                      |            |
| Workbook1* - Man                                   | in-Whitney U T         | est (Charact    | eristics.sta)        |                          |                      | _          |
| Workbook1* ⊡ ··· ⊕ ·· ⊕ ·· ⊕ ·· ⊕ ·· ⊕ ·· ⊕ ·· ⊕ · |                        | Man             | n-Whitney U<br>By va | Test (Char<br>riable Gen | acteristics.«<br>der | sta)<br>oo |
|                                                    |                        | Rank Sum        | Rank Sum             | U                        | Z                    | p-level    |
|                                                    | variable               | male            | female               |                          |                      |            |
|                                                    | Test Item 1            | 2612.500        | 2437.500             | 1234.500                 | -0.093141            | 0.92579    |
|                                                    | 1•1                    |                 |                      | 1                        |                      |            |
|                                                    | Mann-White             | ney U Test (Cha | racteristics.sta)    |                          |                      |            |

 From the Statistics menu, select Nonparametrics, then choose Comparing two independent samples (groups) and click OK.

STRATE STRICA

- 2. Click the Variables button
  and highlight Test Item 1 in
  the Dependent variable list
  box and Gender in the Indep.
  (grouping) variable box.
  Click OK.
- 3. Click the *M-W U test* button.





## Example Steps



4. Now, look at a box plot to visualize the results. To do this, resume the analysis. Click the *Box & Whisker plot by group* button on the *Comparing Two Groups* dialog.

SILAINISILI

The plot confirms our conclusion that there is little difference between males and females in respect to *Test Item 1*.

**60** 



# Example 12: Comparing Two Dependent Samples



When the data are nonparametric, use the Sign test or Wilcoxon's matched pairs test to compare two dependent samples.

For this example, use *Characteristics.sta*.



# Example Steps



STRATE STRICA

| 🎑 Comparing two vari     | ables: Characteristics.s                                                    | ta  ?                           | _ ×                                     |                              |                                 |
|--------------------------|-----------------------------------------------------------------------------|---------------------------------|-----------------------------------------|------------------------------|---------------------------------|
| 🕵 Variables              | I                                                                           | 🖪 🛛 Sign                        | test                                    |                              |                                 |
| List 1: Test Item 1      |                                                                             | Cance                           | el                                      |                              |                                 |
| List 2: Test Item 2-Test | Item 3                                                                      |                                 |                                         |                              |                                 |
| Quick                    | <u> </u>                                                                    | Option                          | ns 🔻                                    |                              |                                 |
|                          | I SEI                                                                       | ECT _ L                         | <b>a</b> 1                              |                              |                                 |
| Sign te:                 | st <u>CR</u>                                                                | SES S                           |                                         |                              |                                 |
| Workbook1* - Sign        | n Test (Characteristics.sta)                                                |                                 |                                         |                              | _ [                             |
| Workbook1*               |                                                                             | Sign<br>Marked te               | Test (Cha<br>sts are sig                | racteristics<br>Inificant at | sta)<br>p <.05000               |
|                          |                                                                             |                                 |                                         |                              |                                 |
| Sign Tes                 | Pair of Variables                                                           | No. of<br>Non-ties              | Percent<br>v < V                        | Z                            | p-level                         |
| Sign Te:                 | Pair of Variables<br>Test Item 1 & Test Item 2                              | No. of<br>Non-ties<br>100       | Percent<br>v < V<br>100.0000            | Z<br>9.900000                | p-level                         |
| Sign Tet                 | Pair of Variables<br>Test Item 1 & Test Item 2<br>Test Item 1 & Test Item 3 | No. of<br>Non-ties<br>100<br>92 | Percent<br>v < ∨<br>100.0000<br>86.9565 | Z<br>9.900000<br>6.985233    | p-level<br>0.000000<br>0.000000 |
| Sign Te:                 | Pair of Variables<br>Test Item 1 & Test Item 2<br>Test Item 1 & Test Item 3 | No. of<br>Non-ties<br>100<br>92 | Percent<br>v < ∨<br>100.0000<br>86.9565 | Z<br>9.900000<br>6.985233    | p-level                         |
| Sign Tes                 | Pair of Variables<br>Test Item 1 & Test Item 2<br>Test Item 1 & Test Item 3 | No. of<br>Non-ties<br>100<br>92 | Percent<br>v < V<br>100.0000<br>86.9565 | Z<br>9.900000<br>6.985233    | p-level<br>0.000000<br>0.000000 |

- 1. Select *Nonparametrics* from the *Statistics* menu.
- 2. Choose **Comparing two** dependent samples (variables) and click **OK**.
- Select the variable Test Item 1 in the First variable list box and select both Test Item 2 and Test Item 3 in the Second variable list box.
- 4. Click the Sign test button.





## Example Steps



SILATUSILI



5. Resume the analysis and create a box plot to graphically visualize the results. Click the **Box &** whisker plots for all variables button. Select all three variables and click **OK**. Select the *Median/Quart./ Range* option button on the Box-Whisker Type dialog, and click **OK** to produce the graph.





## Example 13: Comparing Multiple Independent Samples



The nonparametric equivalents to the one-way ANOVA method are the Kruskal-Wallis analysis of ranks and the Median test.

For this example, use *Characteristics.sta*.

#### M StatSoft



Example Steps



UNIISSINIC

| Cuick                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | llis ANOVA and Medi                                                            | an Test:                                                                   | Characte                                                                                        | eristics.st                                | a <b>? _ &gt;</b><br>Summary                  | <b>≤</b><br>]          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------|------------------------|
| 🖳 🛛 🖳                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | is                                                                             |                                                                            |                                                                                                 |                                            | lancel                                        |                        |
| Dependent v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ariables: Test Item 1                                                          |                                                                            |                                                                                                 |                                            | Dotions 🔻                                     | 1                      |
| Grouping vari                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | able: Hair Color<br>x1* - Kruskal-Wallis ANOV                                  | A by Ranks                                                                 | ; Test Item                                                                                     | 1 (Charac                                  | teristics.sta)                                |                        |
| Workbook1       Image: Strate Str | * ametrics (I skal-Wallis Kruskal-W Median T Depend.: Co Test Item 1 brown red | skal-Wallis<br>ependent (g<br>skal-Wallis<br>de Valid<br>N<br>1 46<br>2 22 | ANOVA b<br>grouping) va<br>test: H ( 3<br><b>Sum of</b><br><u>Ranks</u><br>2239.500<br>1275.500 | y Ranks; 1<br>ariable: Hai<br>}, N= 100) = | Test Item 1 (<br>r Color<br>=2.104098 p       | Characteri<br>) =.5511 |
| Workbook1* - M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | edian Test, Overall Media                                                      | n = 10.000                                                                 | 0; Test Iter                                                                                    | n 1 (Charao                                | cteristics.sta                                |                        |
| Workbook                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                | t, Overall I<br>Indepe<br>Chi-S                                            | Median = 1<br>indent (grou<br>quare = 1.9                                                       | 0.0000; Te<br>uping) varia<br>308146, df:  | st Item 1 (C<br>ble: Hair Co<br>= 3, p = .59* | haract 🗾<br>Ior<br>17  |
| Media                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dependent:<br>Test Item 1                                                      | brown                                                                      | red                                                                                             | black                                      | blonde                                        | Tota                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <= Median: observed<br>expected                                                | 28.00000                                                                   | 10.00000                                                                                        | 15.00000                                   | 2.000000                                      | 55.00                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | obsexp.<br>> Median: observed                                                  | 2.70000                                                                    | -2.10000                                                                                        | 12.00000                                   | 3.000000                                      | 45.00                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | expected<br>obsexp.                                                            | -2.70000                                                                   | 2.10000                                                                                         | -0.15000                                   | 0.750000                                      | 100.00                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                | 40.00000                                                                   | 22.00000                                                                                        | 27.00000                                   | 5.000000                                      |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                |                                                                            |                                                                                                 |                                            |                                               |                        |

 Select Nonparametrics from the Statistics menu.

N/A

- 2. Choose *Comparing multiple indep. samples (groups)*, then click the *Variables* button and select *Test Item 1* as the *Dependent variable list*, and *Hair Color* as the *Indep. (grouping) variabl*e. Click *OK*.
- Click Summary. The Median test results are displayed next in the workbook



## Example Steps



 Now, look at a box plot to graphically visualize the results. This graph is available via the **Box &** whisker button on the Kruskal-Wallis ANOVA and Median Test dialog.

SILAINISILI

Notice that each analysis in this workbook was a new analysis. If you placed all of the documents in the same workbook, your workbook could look similar to this.



## **Example 14: Frequency Tables**



Frequency or one-way tables represent the simplest method for analyzing categorical (nominal) data. They are often used as an exploratory procedure to review how different categories of values are distributed in the sample.

SIN MANNISSIN NI (C)A

For this example, use Sports.sta.

#### M StatSoft



# Example Steps



CADDIS DDI

| Frequency Tables: Sport | ts.sta                       | <u> ? _   ×</u>                     |                                                                              |       |  |  |  |
|-------------------------|------------------------------|-------------------------------------|------------------------------------------------------------------------------|-------|--|--|--|
| Variables: Football     |                              | Summary                             |                                                                              |       |  |  |  |
| Quick Advanced Options  | Descr. Normality             | Cancel                              |                                                                              |       |  |  |  |
| Workbook1.stw* - I      | Frequency table: Footba      | all: "Watching footba               | all" (Sports.sta)                                                            | _ 🗆 × |  |  |  |
| Basic Statistics/T      | Category                     | Frequ<br>Coun                       | Frequency table: Football: "Watch<br>Count Cumulative Percent Cur<br>Count P |       |  |  |  |
|                         | Always: Always intere        | sted 3                              | 9 39 39.00000<br>6 55 16.00000                                               |       |  |  |  |
| <u>u</u>                | Frequency Tables: Sports.sta |                                     |                                                                              |       |  |  |  |
|                         |                              | otball Marathon                     | Summary                                                                      | ] =   |  |  |  |
|                         | Quick Advanced Op            | tions Descr. Normality              | y Cancel                                                                     |       |  |  |  |
|                         | Descrip                      | otive statistics                    | 🔁 Options 🔻                                                                  | ╻╞╴┚  |  |  |  |
|                         | Box & whisker p              |                                     |                                                                              |       |  |  |  |
|                         | Normal pro                   | obability plots ( <u>2)</u>         |                                                                              |       |  |  |  |
|                         | Half-normal (                | probability plots ( <u>3</u> )      |                                                                              |       |  |  |  |
|                         | Detrended norm               | nal probability plots ( <u>4</u> )  |                                                                              |       |  |  |  |
|                         | 💯 3D histograms, b           | ivariate distributions ( <u>5</u> ) |                                                                              | 1     |  |  |  |
|                         |                              |                                     |                                                                              |       |  |  |  |
|                         |                              |                                     | <u>MD</u> deletion                                                           | 1     |  |  |  |
|                         |                              |                                     | C Casewise<br>Pairwise                                                       |       |  |  |  |
|                         |                              |                                     |                                                                              | -     |  |  |  |

- Choose Frequency tables from the Basic Statistics and Tables (Startup Panel). Select Football as the Variable, and click OK.
- 2. Click the Summary button
- 3. Press CTRL+R and select Football and Marathon.
- Return to the *Frequency Tables* dialog and select the *Descr.* tab.



# Example Steps



5. Click the **3D histograms**, **bivariate distributions** button. Select *Football* for the first variable list and *Marathon* for the second variable list.

CALICIES ICIC

Click OK.

From this graph, you can see that regarding the two sports selected, the largest group of men said that they never watch marathons on television and always watch football.



# Example 15: Crosstabulation Tables



Crosstabulation allows us to examine frequencies of observations that belong to specific categories on more than one variable. By examining these frequencies, we can identify relationships between variables.

For this example, use Sports.sta.

70



## Example Steps



STRATE STRICA

| Quick | sstabulation Tables Ro<br>Advanced Options<br>Summary: Review <u>s</u> umma<br>Categorized histogra              | esults: Sports.<br>ary tables        | sta                |                     |                       | ? _ ×       Summary       Cancel       Options ▼       npute Max. |               |   |
|-------|------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------|---------------------|-----------------------|-------------------------------------------------------------------|---------------|---|
| 6     | Workbook1.stw <sup>*</sup> - S<br>Workbook1.stw <sup>*</sup><br>⊡ - → Basic Statistics/T<br>⊡ - → Crosstabulatic | Summary Frequency Table (Sports.sta) |                    |                     |                       |                                                                   |               |   |
|       | Summary                                                                                                          | Football                             | Baseball<br>Always | Baseball<br>Usually | Baseball<br>Sometimes | Baseball<br>Never                                                 | Row<br>Totals |   |
|       |                                                                                                                  | Always                               | 24                 | 8                   | 5                     | 2                                                                 | 39            |   |
|       |                                                                                                                  | Usually                              | 2                  | 5                   | 7                     | 2                                                                 | 16            |   |
|       |                                                                                                                  | Sometimes                            | 2                  | 3                   | 19                    | 2                                                                 | 26            |   |
|       |                                                                                                                  | Never                                | 0                  | 1                   | 6                     | 12                                                                | 19            |   |
|       |                                                                                                                  | All Grps                             | 28                 | 17                  | 37                    | 18                                                                | 100           |   |
|       |                                                                                                                  |                                      |                    |                     |                       |                                                                   |               | 7 |
|       |                                                                                                                  |                                      |                    |                     |                       |                                                                   |               | × |
|       |                                                                                                                  | 📰 Summary F                          | requency Tab       | ole (Sports.sta     | )                     |                                                                   |               |   |

- 1. Choose *Tables and banners* from the *Startup Panel* and click *OK*.
- 2. On the **Crosstabulation** tab, click the **Specify tables** (select variables), and select Football in List1 and Baseball in List2. Click OK. Click OK on the **Crosstabulation** Tables dialog.
- 3. On the **Crosstabultaion Tables Results** dialog, click **Summary**.



# Example Steps



 On the Options tab, select the Pearson & M-L Chisquare check box. On the Advanced tab, click Detailed two-way tables.

SILA ILISILI

 Press CTRL+R, then click 3D histograms on the Advanced tab.
#### A StatSoft



# Example Steps



PAJPI (SIPI (C)

| Workbook1* - Summary Frequency Table (Sports.sta)                                        |                                                                                                              |           |                      |                       |                         |                |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------|----------------------|-----------------------|-------------------------|----------------|
| workbook1*<br>⊡ ∰ Basic Statistics/T<br>⊡ ∰ Crosstabulati                                | Summary Frequency Table (Sports.sta)<br>Marked cells have counts > 10<br>(Marginal summaries are not marked) |           |                      |                       |                         |                |
| 2-Way Si<br>Statistics<br>Statistics<br>Summary                                          | Football                                                                                                     | Baseball  | Basketball<br>Always | Basketball<br>Usually | Basketball<br>Sometimes | Basket<br>Neve |
|                                                                                          | <u>Always</u>                                                                                                | Always    | 11                   | 8                     | 2                       |                |
|                                                                                          | Always                                                                                                       | Usually   | 2                    | 2                     | 3                       |                |
|                                                                                          | Always                                                                                                       | Sometimes | 2                    | 0                     | 0                       |                |
|                                                                                          | Always                                                                                                       | Never     | 0                    | 0                     | 0                       |                |
|                                                                                          | lotal                                                                                                        |           | 15                   | 10                    | 5                       |                |
|                                                                                          | Usually                                                                                                      | Always    | 0                    | 0                     | 1                       |                |
|                                                                                          | Usually                                                                                                      | Usually   | 0                    | 1                     | 4                       |                |
|                                                                                          | Usually                                                                                                      | Sometimes | 1                    | 0                     | 5                       |                |
|                                                                                          | <u>Usually</u>                                                                                               | Never     | 0                    | 0                     | 1                       |                |
|                                                                                          | Total                                                                                                        |           | 1                    | 1                     | 11                      |                |
|                                                                                          | Sometimes                                                                                                    | Always    | 0                    | 1                     | 1                       |                |
|                                                                                          | Sometimes                                                                                                    | Usually   | 0                    | 0                     | 2                       |                |
|                                                                                          | Sometimes                                                                                                    | Sometimes | 2                    | 2                     | 12                      |                |
|                                                                                          | Sometimes                                                                                                    | Never     | 0                    | 0                     | 1                       |                |
|                                                                                          | Total                                                                                                        |           | 2                    | 3                     | 16                      |                |
| 🔹 💽 👘 Bivariate Distribution: Football x Baseball 🏢 Summary Frequency Table (Sports.sta) |                                                                                                              |           |                      |                       |                         |                |

- Press CTRL+R, then cancel to return to *Crosstabulation Tables* dialog. Specify new variables: *Football* on *List1*, *Baseball* on *List2*, and *Basketball* on *List3*.
- Click OK to run the analysis. Click Summary. In this survey, 12 men said they watch baseball sometimes, football sometimes, and basketball sometimes.



### **Example 16: ByGroup Analysis**



Use **ByGroup** analysis to do the wide variety of analyses and graphs in *STATISTICA* while taking a grouping variable into consideration.

STRATEISTEICA

For this example, use *Characteristics.sta*.

#### M StatSoft



## Example Steps



 Select Statistics - ByGroup Analysis. In the ByGroup Statistics Browser select Basic Statistics and Tables in the left pane and Correlation Matrices in the right pane.
Click OK.

SIPAIRISIPICA

 On the Quick tab, click Variables and select Height(in), Weight(lb), and Age(yr) in the first list; click OK. Click By Variables and select Gender. Click OK.

#### A StatSoft



## Example Steps



3. Select the **General** tab and select **All results** for the **Detail of computed results reported**.

STRATISICIA

- 4. Click **OK** to display the results.
- When you compare the results for *Males* and *Females*, you can see that only the correlation between *Weight* and *Age* for *Males* was significant.