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A B S T R A C T

X-ray microtomography is widely used in materials science and engineering applications for imaging and ana-
lysis of material structure and morphology. For this purpose, and especially in the case of routine analysis tasks
for industrial materials applications, confidence in obtained measurement results are crucial. Despite great
progress in this field over the last 10 years, with many high-quality commercial systems now available, the lack
of a simple and widely-used image quality metric that can capture all important aspects of the quality of a
microCT scan, continues to hinder wider acceptance of the technology. Various errors can occur during the
microCT scan process, which can potentially mask the presence of pores, or affect the volumetric measurements
of interest. In this work we demonstrate a simplified image quality metric which can easily be implemented. We
show how this new image quality metric is sensitive to all typical microCT scan errors and artifacts, which makes
it a valuable tool for defining a required minimum image quality for an analysis. The object used is a 10mm cube
of titanium alloy (Ti6Al4V) produced by laser powder bed fusion additive manufacturing. This type of coupon
sample is useful for analysis of the additive manufacturing process, but it is critical that small pores are seen with
good contrast. Identical porosity analysis workflows are applied to scans with different image qualities, which
demonstrates the importance of image quality for reproducible analyses of this sample type. The results have
implications in defining quality values for all forms of materials analysis using the technique. This work can
further lead the way to incorporating microCT into future fully automated and standardized analysis workflows
for quality control, when image quality meets a specified minimum criterion.

1. Introduction

X-ray micro computed tomography (also known as X-ray micro-
tomography or micro-CT) is a non-destructive materials imaging and
analysis technique growing in popularity in materials science and en-
gineering applications. This growth can be attributed to its many ad-
vantages – particularly the ability to visualize internal structures of
materials in three dimensions and without the need for destructive
sectioning. Besides visualization, numerous quantitative analyses are
possible, the most well-known being porosity quantification. The use of
the technique in materials science applications was reviewed in [1],
which highlights the quantitative capabilities for three-dimensional
materials characterization. All kinds of engineering and other materials
benefit from non-destructive 3D analysis, as shown in reviews of the
technique applied to geomaterials [2], asphalt and concrete materials
[3], additively manufactured materials [4], composites [5], biological
samples [6], herpetology [7], natural structures as basis for engineering
design i.e. biomimicry [8], amongst others. Besides research

applications, the technique is also very useful for non-destructive
testing and process improvement in industrial applications – various
industrial applications are demonstrated in [9,10]. As shown in these
papers, the technique is becoming an accepted non-destructive test
method for industrial inspection of injection moulded parts, cast metal
parts and is especially useful for inspection of high-value parts such as
those in aerospace and energy production industries. In addition to
inspection, the dimensional measurement capability of the technique
allows it to be used as a metrology tool, as discussed in detail in
[11,12]. For metrology applications, dimensional calibration is im-
portant and various test artifacts have been proposed and demonstrated
for this purpose [13–15].

Despite all the application possibilities and the proven utility of the
technique, and despite the successful dimensional calibration efforts,
the method is still plagued by some reliability issues. This is due to the
large variety of instrument types available (ranging from small
benchtop models to large bunker systems and even synchrotron ima-
ging beamlines), differences in hardware and software used for image
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analysis and differences in the skill-sets and experience levels of the
scientists or operators doing the scanning (optimization of parameters,
etc.) and subsequent image interpretation or analysis. It can be well
understood that different systems are suited to different tasks, with
image quality differences to be expected. The quality of obtained
images is therefore critical to ensure positive identification of flaws and
also critical to accurate quantification in images (e.g. porosity %). Post-
scan image analysis is discussed in detail in [16], also mentioning
image quality evaluation and good image quality as a prerequisite for
further image analysis.

The drawback to high image quality is usually cost, as more ex-
pensive systems and longer scan times are required. However, to date
there is not a wide understanding of this challenge. Especially new
users of the technology aim to minimize scan times, which can sig-
nificantly reduce image quality. For improved uptake of the technology,
and to improve the confidence in the obtained results, an accepted and
reliable image quality metric would be very helpful, which is widely
applicable and easy to apply to any micro-CT data set. The grey values
obtained in CT images (typically 8-bit or 16-bit type) are such that
different materials have different distinct grey value ranges. These
ranges vary in their extent and their separation from each other in the
grey value histogram, making it easier or more difficult to clearly dis-
tinguish the materials from each other (contrast). In addition, inherent
noise exists in the background and the material, due to detector and
other noise inherent in the data acquisition process. In addition to
material contrast and noise, the image sharpness (which is mainly due
to the inherent resolution of the system) is highly important. All these
parameters were recently investigated separately in a comprehensive
study of image quality improvement for scanning of fossils embedded in
rocks [17] as a case study to illustrate optimized scan parameters for
this particular sample type. A similar study was recently reported for
porosity analysis of carbonate rocks in [18], as well as for fast iterative
reconstruction and optimization of image quality for porous rocks in
[19]. More generally the effect of scan parameters on CT images was
also reported in [20], and image quality and reproducibility were stu-
died in scans for geoscience applications in [21].

Image quality evaluation in CT images is an ongoing issue in the
field, as there has thus far not been a universally relevant and simple
method to quantify this important parameter. An existing ASTM stan-
dard exists for measuring image quality in CT scans, but this is limited
to a single slice image of a cylindrical object scanned exactly vertically,
which was developed for fan-beam CT in particular [22]. This standard
is not suited to cone-beam CT systems (which are more widely used)
and the afore-mentioned measurement is not a global image quality
metric for the entire 3D volume, it represents the quality in a single
slice only. Quality measurement of full cone-beam micro-CT images
have been investigated in the context of dimensional measurements in
[23] and a proposed metric incorporating all important factors above
was proposed in [24], based on the grey-value histogram representing
the grey-value data in the entire volume. This latter method is easy to
implement and therefore is very promising as a widely used metric for
image quality incorporating contrast, noise and sharpness of images in
one measurement. It was however not demonstrated or tested over
different scan parameters yet, and uses the histogram for measure-
ments. This can be challenging to implement objectively, as the dis-
tributions are not always Gaussian or symmetrical.

In addition to image quality variations which exist between dif-
ferent scans, which can be controlled to some extent by good choices of
scan parameters and good choice of system for the required sample,
various other unexpected scanning errors can occur. These include
double-edges, streak-artifacts, ring artifacts, beam hardening, amongst
others. All these also degrade image quality, making it sometimes im-
possible to properly evaluate the obtained data. Such CT errors have
been investigated and demonstrated in various works, see for example
[6,25–27].

In this paper we make use of an additively manufactured coupon

sample (10mm cube of Ti6Al4V alloy) which has been well char-
acterized in prior work. It was the subject of a previous round robin test
[28], where 10 different participants using different micro-CT instru-
ments and experience levels all scanned the same object using pre-
scribed parameters and identified the main pore distribution correctly,
ie. small spherical pores all under one surface primarily, with few other
pores in the sample. Despite the positive identification of the pore
distribution, the different scans of the same object had inherently dif-
ferent image qualities, making quantitative evaluation and comparison
difficult. This highlighted the need for a globally relevant image quality
metric, as well as the need for good image quality for quantitative
measurements from microCT scans.

In this present work we use the same cube and quantify image
quality across a series of scans with varying parameters and including
various artifacts induced intentionally. In this way the utility of the
image quality metric is demonstrated, various typical artifacts are de-
monstrated, and their effects on the image quality metric also quanti-
fied. Besides the modified image quality measure for the entire cube
similar to the previously suggested metric, we use in addition a mod-
ified version of the same method applied to the material surface region
only (5 voxels on either side), which provides an improved measure of
sharpness or blur in the image. This sharpness is critical for small pore
detection and is not captured in the simple first-level image quality
metric making use of the entire cube and all air around it.

Quantification of porosity in the 10mm cube of Ti6Al4V was done
according to a prescribed workflow [29], and this is further used to
evaluate the reliability of the workflow, with different image qualities.
This work aims to support standardization efforts towards improving
the reliability and reproducibility of microCT as applied to materials
science and engineering projects generally. It also brings home the
message that “not all scans are equal” – a common misconception
among new users to this technology. In addition, the work serves as
demonstration of the effect of each typical CT artifact, which will assist
new users of this technology.

2. Methods

X-ray tomography was performed at the Stellenbosch CT facility
using two different systems – microCT and nanoCT systems [30]. The
microCT refers to a typical laboratory system with reflection-type X-ray
source with minimum focal spot size approximately 5 μm (model GE
Vtomex L240). NanoCT refers to a system with transmission-type X-ray
source with best spot size below 1 μm, allowing (in principle) voxel
sizes to 0.5 μm (model GE Nanotom S). A single microCT data set was
used as good “reference” example, and a series of scans were conducted
on the nanoCT system. The two systems have different types of sources
and detectors, the latter mainly affecting the contrast and background
noise levels. A single cube was used which originated from two previous
round robin studies [28,31], and which was produced by laser powder
bed fusion [32] using a commercial system using Ti6Al4V powder. The
selected 10mm cube contains small rounded pores subsurface of the top
surface of the cube (relative to its build orientation), making a good
qualitative test for image quality due to the small size and specific lo-
cation of these pores. This is a particularly challenging quantitative
analysis due to the small size of the pores (largest pore 0.2mm) and
small mean porosity value (∼0.02 %).

The image quality metric proposed in [24] is used in this work in a
modified format, it is defined as follows:
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Where μ is the mean grey value and σ is the standard deviation of the
histogram distribution for material (2) and air (1) respectively. In the
work in [24], the values were obtained from the histogram distribution
with potentially overlapped peaks for air and material. In this work we
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segment the data first, to obtain separate histograms for material and
for air, simplifying the quantitative analysis. In addition, the direct
measurement of mean and standard deviation from the software
package used eliminates an additional step of processing (obtaining the
values from a histogram output). In this work, the grey value analysis
tool in VGSTUDIO MAX was used after segmentation to provide effec-
tively analysis of each phase (material and air) separately.

In addition to this modification, we propose an additional step to
create two different quality factors based on two segmentations. In the
first step, the values are obtained from the entire cube material data
and all air data outside the cube (separately), using the surface de-
termination function to differentiate these from each other – this is il-
lustrated in Fig. 1(a) and (b). In the second step, the same analysis is
made using values obtained from the region near the edge of the cube
only – 5 voxels on either side of the surface of the cube which is illu-
strated in Fig. 1 (c) and (d). This latter step is implemented using the
“create ROI from surface” function and applying a thickness equivalent
to 10 voxels. The first image quality metric is sensitive mainly to con-
trast and noise, providing a good “first-level” quality measure, which
we call Q1. The second is more sensitive to blur or loss of sharpness
which occurs more at edges of the material and we call this Q2.

A video is included as supplementary material, to demonstrate how
the above values are found from the CT data set. In a hypothetical
“ideal” case with material and air having grey value distributions with
infinitely sharp and narrow peaks, the value of the denominator in the
Q-value calculation strives to zero and therefore the Q value strives to
infinity. This means there is theoretically no upper limit on the quality
value. A realistic “ideal case” was created as a test in VGSTUDIO MAX
using a 10mm cube defined and created as an artificial voxel data set
with 10 μm voxel size, in the same scan volume as a typical cube scan.
The air and material values were artificially smoothed and normalized
to 0 and 65,535 and the edge sharpness was only limited by the 10 μm
voxel size and rotation of the voxel grid with respect to the edges of the
cube, creating some region of partial volume effect. The obtained
“ideal” values for this artificial dataset was found to be Q1=68 and
Q2=13, which gives a good indication of a maximum image quality
possible.

The experimental campaign is divided into two parts: (a) demon-
strating the image quality Q1 and Q2 value variation with different
types of scans and incorporating different typical image artifacts, and
(b) applying image analysis on a series of data sets of the same sample,
with varying image quality – to demonstrate the need for high image
quality for reliable image analysis. The series of scans with induced
image quality differences are summarized in Table 1.

3. Image quality results

3.1. Machine change

A change of machine from microCT to nanoCT in this case resulted
in a quality Q1 value reduction from 8.6 to 4.5, with this reduction
clear in the images in Fig. 2. Both scans are optimized and total 1 h scan
time. The quality Q2 values are 3.7 and 3.3 for microCT and nanoCT
respectively. The larger difference in Q1 values can be attributed to the
microCT detector having a 16-bit data depth while the nanoCT detector
has only 12-bit data depth; this difference ensures greater contrast for
the microCT system which is better captured by the Q1 value. Both
images are sharp making the Q2 values more similar despite the ob-
vious increased noise in the nanoCT image to the right.

3.2. Scan time

Scans with increased scan time (increased image averaging and
number of projection angles) is shown in Fig. 3 to improve the image
quality. The Q1 image quality value (circles) continues to improve with
increasing scan time due to reduced noise but this increase starts to
reach a plateau level. In practical terms, longer scans effectively limit
the sample throughput and increase the cost to the user, therefore a
compromise is usually sought after. The Q2 value increases strongly up
to approximately 1 h, thereafter reaching a plateau level with some
variation observed (dip in value at 2 h). This reduced value at 2 h can be
due to some slight change in the system stability, X-ray flux or detector
response, as this scan was conducted on a different day. As seen in
Fig. 4 in representative slice images, this particular system seems to
require at least 2 h to obtain reasonable image quality for this sample
type, which translates to quality values Q1 > 6, and Q2 > 3.

3.3. Voltage change

In this experiment, three voltages were selected covering the range
of most laboratory microCT instruments: 50, 100 and 150 kV. Beam
filters were used and current adjusted to ensure the same detector
counts, for direct comparison – in this case no filters at 50 kV or 100 kV
(lower current at higher voltage) and 0.5mm copper filter at 150 kV. In
this series, as seen in Fig. 5, the image quality improves with increasing
voltage – with less brightness variations are evident at higher voltage.
This translates to quality Q1 values of 2.9, 3.5 and 5.4 respectively in
the series shown. The pores near the top surface are not well dis-
tinguished as seen in the images. The best result is at highest voltage as

Fig. 1. Close-up of corner of cube in microCT
slice image showing (a) surface determination
in white line; (b) segmentation of air (blue)
and material (red) allowing quality value Q1 to
be calculated; (c) near-surface region of in-
terest of 5 voxels on either side of surface
(green); (d) near-surface segmentation of air
(blue) and material (red) allowing quality
value Q2 to be calculated (For interpretation of
the references to colour in this figure legend,
the reader is referred to the web version of this
article).
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expected for this sample type, as metals are typically scanned using
higher voltage for better penetration of X-rays through the sample. The
Q1 value clearly identifies the expected trend that lower voltage results
in a large variation of brightness values resulting in a lower Q1 value.
For Q2 which gives an indication of the sharpness in the images, the
values are 1.4, 1.1 and 2.1, which are all very poor compared to the
reference nanoCT scan (Q2=3.3).

3.4. Streak artifact

The use of a dense metal object placed alongside the cube induced
streak artifacts in the image. This makes it challenging to segment the
cube from the rest of the image and makes the image quality mea-
surement impossible. A slice image is shown in Fig. 6 where the streaks
are visible inside the cube at the bottom of the image, due to the dense
material outside the cube – in this case gold was used. The cube is
scanned at an angle and in this case the image is kept in the same
orientation as in the scan, to demonstrate the horizontal nature of the
streaks – in the direction of the X-ray beam perpendicular to the rota-
tion axis.

3.5. Sample mounting errors

Two sample mounting errors are demonstrated here. The first is to
load the cube perfectly square relative to the X-ray beam direction, this
causes cone-beam artifacts along the flat edges of the cube which are
almost always parallel to the beam during sample rotation (in this case
top and bottom of cube) as seen in Fig. 7. In this case the image quality
Q1 value is 3.9 (compared to ideal case of 4.5) – only a slight reduction.
The Q2 value here is 1.8 compared to 3.3 of the ideal case, indicating
the loss in sharpness especially on some of the edges. The pores of

interest in this case lie in the region which seems darker due to the cone
beam artifact. This can affect the image analysis process and can po-
tentially mask pores.

Another important sample mounting issue is proper fixture of the
sample to the rotation hardware. A loose mounting of the cube causes
the sample to move slightly (e.g. due to vibration) during scanning
which effectively blurs the image. The resulting image in Fig. 8 shows
no pores where they are expected and the edges of the sample are also
blurred. The Q1 image quality value here is 3.6 (reference 4.5), and Q2
value is 1.9 (reference 3.3).

3.6. Dead pixel rings

An image artifact that occurs due to detector pixels that are not

Table 1
Image quality variation test summary – total of 23 data sets.

Test name Details

Change machine MicroCT vs NanoCT 1 hr optimized each
Vary scan time 3 min; 20min; 45min; 2 hrs; 3 hrs; 4 hrs
Vary voltage 50 kV; 100 kV; 150 kV
Induce streak artifact One scan with dense metal alongside cube
Sample mounting error 1 Cube mounted square – cone beam artifacts on flat edges
Sample mounting error 2 Cube mounted unstable
Dead pixels on detector Dead pixels of detector causing bright rings
Double edges Reconstruction “centre of rotation” error causing increasing double-edge in images, values of 5, 10, 20 pixels offset from ideal
Beam hardening correction Increasing beam hardening correction values to correct cupping effect – 5 variations
Rotation rings Scans with and without detector shift

Fig. 2. Representative CT slice images for optimized scans using (a) microCT and (b) nanoCT.

Fig. 3. Image quality Q1 and Q2 increase with increasing scan time. Both Q1
and Q2 increase with time. The Q2 value (sharpness) improves up to 1 h, then
saturates. Slight decrease in Q2 value seen at 3 hs.
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responding (i.e. dead pixels) is that rings occur in the reconstructed
data – this affects the contrast of the material and might interfere with
segmentation. An extreme case is shown in Fig. 9, and the effective
image quality Q1 value here is 0.9, showing this is well covered in the
quality metric. The value of Q2 is 3.1 here (reference 3.3) showing that
in this case there is no loss in sharpness – the loss is in contrast pri-
marily.

3.7. Double edges

During reconstruction, the rotation centre is calculated for opti-
mized reconstruction resulting in sharp images. When this rotation
centre is offset slightly from the ideal value, it causes a blur or in ex-
treme cases a “double edge”. This is demonstrated in Fig. 10 with zero
offset and offset values intentionally used with values of 5, 10 and 20
pixels offset from the rotation axis. Clearly, the ability to distinguish the
pores near the top surface is reduced considerably as the offset is in-
creased. The image quality value changes are graphically illustrated in
Fig. 11, with the Q2 value being very useful to highlight the loss in

sharpness.

3.8. Beam hardening correction

Beam hardening correction is often employed in reconstruction
software to limit the cupping artifacts associated with low energy X-
rays being absorbed more strongly than high energy X-rays. The in-
fluence of this process on the resulting CT slice images is shown in
Fig. 12. An increase in beam hardening correction factor tends to re-
duce the difference in brightness in different parts of the cube as seen in
Fig. 13 (a)–(c). Ideal quality (even grey value across the cube) is shown
in image (d) whereas image (e) is over-compensated. Image quality
values are shown in Fig. 13 for this series, where the correction factor
values range from 0 to 10 and this range is system-specific. The image
quality Q1 value shows a constant decline in value with beam hard-
ening correction, which can be attributed to an increased noise induced
in the process. The value Q2 captures the sharpness of the image, and
the even distribution of grey values when corrected optimally in the
edge region. This shows a peak Q2 value of 3.3 at the value of 9.0 which

Fig. 4. Representative CT slice images with increasing scan time: (a) 3min, (b) 20min, (c) 45min, (d) 2 h, (e) 3 hs, (f) 4 hs.

Fig. 5. Slice images showing that voltage increase improves the image quality for the titanium alloy (Ti6Al4V) cube.
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is the value used in practice most often for scans of metals in this
system. The optimal value and then reduction of the Q2 value for higher
beam hardening correction can be attributed to the over-correction
which is done such that different parts of the image have different grey
values, causing the value to reduce – see Fig. 12 (e).

3.9. Rotation rings

An artifact that is often found in CT images when viewed from the
top (in direction of rotation axis) is the presence of circular rings
around the rotation axis. This is shown in Fig. 14(a) where the dark area
in the middle and sometimes in the noise of the rings themselves can be
mistaken for pore spaces. This artifact can be corrected by activating a
detector-shift, which is demonstrated in Fig. 14(b) where no rings are
present. This detector-shift moves the detector between image acqui-
sitions, effectively removing ring artifacts. The Q1 and Q2 values are
both very similar and are therefore not sensitive to this artifact type

unless it interferes with the edge or makes more intense rings. In this
case the Q1 and Q2 values are 4.6 and 3.1 respectively for the ring-
artifact scan in Fig. 14(a), and 4.5 and 3.3 for the ideal reference in
Fig. 14(b).

4. Analysis results

Analysis was performed according to the “custom defect mask”
method described before. This method makes use of the iso-50
threshold as a starting point, for a local optimization of the best location
of the interface between material and air. This local optimization pro-
cess includes sub-voxel interpolation and improves the segmentation
compared to manual image morphological segmentation and voxel bi-
narization, removing much potential human bias. The initial choice of
threshold for starting point depends on human selection based on visual
inspection of images and the histogram, but this process is eased by the
removal of all exterior air and surface voxels on the edge of the cube,
improving the contrast and the histogram clarity.

Shown in Fig. 15 is the result of this process applied to scans of

Fig. 6. Streak artifact due to denser metal alongside titanium cube – bright and
dark streaks horizontally across the image make it impossible to calculate image
quality values.

Fig. 7. Cone beam artifact along edges of cube, which can mask pores and
reduces the image quality.

Fig. 8. Sample mounting unstable – causes serious loss of image quality.

Fig. 9. Dead pixel rings reducing contrast and image quality Q1 to 0.9 in this
case.
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varying scan time (and hence image quality). For each scan the seg-
mentation was repeated by the same operator 6 times, and porosity (%)
results and their standard deviations are shown. This indicates that for
higher quality scans (at longer scan times), the results are similar and

scans below 1 h cause errors in quantitative analysis. Mostly at short
scan times, the sharpness is lower as indicated already in Fig. 3 in the
previous section. This lower sharpness has the effect of reducing the
detail visible and hence lower values of porosity are reported.

With longer scans there is also some variation as can be expected

Fig. 10. Rotation offset values can cause double edges, blurring the pores and reducing the image quality.

Fig. 11. Loss in image quality from reconstruction offset increase captured by
both Q1 and Q2 image quality values.

Fig. 12. Representative CT slice images for varying beam hardening correction factors of (a) 0; (b) 5; (c) 8; (d) 9.0 and (e) 9.5.

Fig. 13. Image quality Q1 and Q2 as a function of beam hardening correction
factor – best result is found at correction factor of 9, captured by Q2 value.
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Fig. 14. Rotation ring artifact and detector-shift to remove rings – the image quality values are nearly identical.

Fig. 15. Porosity quantification in cubes as a function of scan time, standard deviations are shown for 6 repeated measurements using the same workflow and analyst.

Fig. 16. Quantitative analysis of 3D porosity analysis results as a function of scan time shown here for 45min vs 4 hs: (a) total number of detected pores and standard
deviation over 5 repetitions, (b) mean pore size and standard deviation over 5 repetitions, (c) 3D result of 45min, (d) 3D result of 4 hs.
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due to the small pore sizes and small total porosity content. For ex-
ample, the 2hr-scan has a slightly lower porosity value with narrow
range of deviation. This can be attributed to system variations between
this scan and the rest as this scan was done on a different day. The result
is that its Q2 quality factor is similarly slightly lower than that of the 1 h
and 3 h scans as shown in Fig. 3.

Quantitative comparison between scans at 45min and at 4 h is seen
in Fig. 16: the number of pores detected at 45min is higher with a
larger deviation between analyses. As mentioned above, pores are
missed in this scan but the number of pores detected is higher as many
false pores are detected which are close to the noise level (very small
pores which are due to noise). For this reason the mean pore size of the
45min scan is lower, due to the false pores detected. The 3D images
demonstrate this difference between 45min and 4 h scans, with the 4 h
scan showing the expected porosity location at one surface only with
spherical morphology. The quantitative analysis is reasonable for such
small pores and the reproducibility and precision will likely increase for
larger pores, or higher scan quality.

5. Conclusion

This work has demonstrated a simple image quality measurement
method applicable to microCT. The quality measurements Q1 and Q2
are sensitive to most errors that can occur as demonstrated: Q1 is more
sensitive to contrast and noise, while Q2 is more sensitive to image blur.
The combination of quality factors is shown to be sensitive to all major
image artifacts found in microCT scans and which can affect the ability
to detect or quantify features of interest. The only exception is the
centre-of-rotation rotation ring artifacts which are not very serious in
the case reported and might be detected by these quality measures
when occurring in a more excessive manner. This latter artifact has
minimal influence on typical analyses and can be mitigated by either
detector-shift during scanning, or by software elimination of pores in
the location of the rotation axis. Additional artifacts may occur in
various different systems which could not all be induced in this study,
the most important of which is geometrical unsharpness or blur, due to
the use of a large X-ray spot for too small voxel size. This results in a
blur on the edge of the X-ray projection image which translates to the
CT images. However this effect could not be induced with the nanoCT
with the limited range of power of the X-ray tube available, and limited
dynamic range of this detector. It is expected that this will negatively
influence the Q2 value for increasing values of X-ray tube current.

For the special case of the 10mm cube of Ti6Al4V, the porosity
quantification was done according to the previously defined workflow.
It was shown how an increase in scan time correlates with an improved
analysis reproducibility and similar results for image quality values
above Q1 > 4 and Q2 > 3. Despite the challenging nature of this
quantitative analysis (∼0.018 % porosity), the results clearly show the
utility of using image quality metrics in combination with analysis re-
sults. The potential exists for defining minimum quality thresholds to
improve the confidence in obtained results for any quantitative analysis
by microCT and will even be valuable for qualitative inspection pur-
poses. It is important to realize that the image quality measures re-
ported here are for a homogenous material (e.g. a coupon sample) and
these measures may be unsuited to multi-materials or materials with
great density or compositional differences. It is hoped that these image
quality metrics are used widely to support MicroCT-based materials
analysis. By providing evidence of good image quality in CT images,
analysis results can be trusted and improved usage of the technique can
be ensured.
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