May 242012

Imagine there is a way that a group of researchers or colleagues, or teachers or students, could have real-time secured access to the same documents, be able to edit them simultaneously, leave comments on the text and even have real-time chats about the changes to their research questionnaire, their departmental strategic vision, their reflection on the week’s topic, or their teamwork assignment and presentation …

Drum roll … and in comes Google Drive (previously called Google Docs), a profound way of sharing and editing documents (texts, spreadsheets and presentations) collaboratively, and in real time. With this free service from Google it is possible to create new documents, upload existing ones, and then use them privately or share them out with colleagues or friends, or even with the whole wide world.

Although there are other excellent ways to share documents (like Sharepoint, Skydrive and Dropbox) using local or cloud based services, Google Drive works particularly well when it comes to combining a number of factors, especially the real-time editing and communication possibilities it affords teams who need to collaborate.

Here is a typical “recipe” and the steps of how Google can be used to achieve collaborative creation:

Step 1: Sign up for Google accounts:

This sounds like a strange first step, but from experience it can be said that if all participants in the process have active Google accounts (that means they know their usernames – usually a @gmail e-mail address – and their passwords – and have logged in with it the last week), and knows how to sign in to Google, the battle is half-way won. One can get a Google account by clicking here and then completing the steps (please remember to write down your Gmail e-mail address (i.e. your username) as well as your chosen password somewhere you can find it again!).
Send all Google e-mail addresses to one person in the group.

Step 2:  Create a group folder and share it:

One person in the team goes to (and signs in with their Google account if not already signed in) and then creates a folder for the team (please note to take some time to create a menaingful name for the folder to be easily recognisable a year down the line!).
The same person then shares the folder with the rest of the group by inviting as editors the rest of the group using their Google e-mail addresses (see step 1).

Step 3: Create subfolders, documents and start collaborating:

Once the main folder is created, all documents and subfolders created in that main folder will be visible and editable by any of the members that were invited to share (in Step 2).
From here on it gets very interesting as everybody has to remember that the group functions as one organism that can add and delete at will to documents!

* Tips for smoothing out the collaborative editing:

  • Have identified team members be owners of specific documents (almost like scribes that mostly write and do the changes).
  • Others give their inputs by highlighting parts of the text and the inserting comments which appears on the righ-hand side of the text.
  • Use the Chat function, where all team members that are signed in at the same time will be able to chat about the document using the chat service at the right hand side of the screen (this is hidden and can be made visible by clicking the “Others viewing” button on the right-hand top of the page.
  • One can also download different versions of the document as Word/Exel/PPT to a local computer for archiving and revision-tracking purposes.
  • Be very careful (and discuss and plan beforehand) with the naming of sub-folders and file names. The name should be descriptive and be easily identifiable as it can get quite confusing to only see files with dates, or arbitrary meaningless titles.

** Want to create a listserve for the team? To get even better collaboration, the team can all join a Google Group and then send an e-mail to anyone in the group by sending it to a single group e-mail address. The same process as above applies:

  • All in the team make sure they have a Google account, and send the Google e-mail addresses to one team member.
  • The one teammember then goes to and starts a New group.
  • Once the group exists, the team member then invites all the other team members (with their Google e-mail addresses) to join the group.
  • Once all the group members have accepted and joined, then all the group members can send an e-mail to the group’s e-mail address (typically something like
  • Easy to keep everyone in the loop without having to paste everyone’s e-mail addresses in the To: field anymore!

Google Drive can also be downloaded as an application on your computer, so that you can sync documents from your computer, all the documents you create(d) on the internet, as well as all other supported devices (like iPad, Android etc), very easily. It creates a folder on your desktop in which you can save all your files that you want to archive and access, or share with teams.

For teaching and learning the applications are endless. From simple sharing of class notes, to a whole practical class collaboratively inputting data into a biology experiment’s data fields, Google Drive can be used creatively to support research, teaching and learning.

Keywords: google drive, google docs, google groups, collaboration, research, teaching, learning, teamwork

Jan 172012

Towards learning centred use of technology

Clickers or audience response systems are gaining popularity around the world with even the New York Times reporting on the educational potential of this in-class educational technology*.  In South Africa there seems to be a renewed interest in the tehnology’s affordances with a few universities piloting different systems at the start of 2011. At Stellenbosch University (SU) the interest in clickers multiplied at the end of 2010 with a number of educational research projects asking for funding for clickers and some deans enquiring about the possibilities of using clickers to engage, assess and track students. The Centre for Teaching and Learning (CTL) engaged with these lecturers and deans and together with our Information Technology department, formalised a project around the development of a system for e-Clickers, called Maties Mobile Connect. The idea is to plan for the future use of clickers at Maties, a future we feel is definitely cellphone/ multi-device based (as opposed to physical audience response units), and rooted in solid teaching and learning principals**.

The system has been piloted in the second half of 2011 and is now ready for use inside (and outside!) SU classrooms.

* Steinberg, J. 2010. More professors give out hand-held devices to monitor students and engage them. The New York Times, Nov 15, 2010. Online: (Accessed 15 April 2011).
** Beatty, I.D (et al) 2006. Designing effective questions for classroom response system teaching. Am. J. Phys. 74 (1), 31-39.

To start using the system or for more information, please contact JP Bosman (SOL – or Marinda van Rooyen (IT –

YouTube Video on the process of Maties Mobile Connect

View a special training site with videos and other material on the Maties Mobile Connect site:

Poster on the system

 Click here to view a poster (PDF) of the Maties Mobile Connect system as presented by JP Bosman and Marinda van Rooyen at Heltasa 2011 in Port Elizabeth.


Other resources

Steinberg, J. 2010. More professors give out hand-held devices to monitor students and engage them. The New York Times, Nov 15, 2010. Online: (Accessed 15 April 2011).
Beatty, I., 2005. Transforming student learning with classroom communication systems. Arxiv preprint physics/0508129.
Beatty, I. et al., 2006. Designing effective questions for classroom response system teaching. American Journal of Physics, 74, p.31.
Briggs, C. & Keyek-Franssen, D., 2010. Clickers and CATs: Using Learner Response Systems for Formative Assessments in the Classroom. EDUCAUSE Quarterly, 33, pp.1-11.
Caldwell, J., 2007. Clickers in the large classroom: current research and best-practice tips. CBE-Life Sciences Education, 6, pp.9-20.
Educause “7 Things you should know about clickers” Available online:
Lasry, N., 2008. Clickers or flashcards: Is there really a difference? The Physics Teacher, 46, p.242.
Martyn, M., 2007. Clickers in the classroom: An active learning approach. Educause Quarterly, 30, p.71.
Murray, S., Ma, X. & Mazur, J., 2009. Effects of peer coaching on teachers’ collaborative interactions and students’ mathematics achievement. The Journal of Educational Research, 102, pp.203-212.
Wieman, C. et al., 2008. Clicker Resource Guide: An Instructors Guide to the Effective Use of Personal Response Systems (Clickers) in Teaching. Vancouver, BC, Canada: University of British Columbia.

Other web-based mobile systems

iClicker: – “i>clicker’s mission is to create reliable, intuitive response solutions that focus on formative assessment and pedagogy.”
Top Hat Monocle:  – “A classroom interaction and online homework tool”
Socrative: –  “Socrative is a smart student response system that empowers teachers to engage their classrooms through a series of educational exercises and games via smartphones, laptops, and tablets.”
Poll Everywhere: – “The fastest way to create stylish real-time experiences for events using mobile devices”


Keywords: mobile, m-learning, clicker, maties mobile connect, technology, e-learning, audience response systems


Sep 262011

Papers worth reading about on Active and Cooperative Learning

 Brecke, R.; Jensen, J. 2007. Cooperative Learning, Responsibility, Ambiguity, Controversy and Support in Motivating Students. Student Motivation, 2, pp 57-63.

 This paper argues that student motivation is nurtured more by intrinsic rather than extrinsic rewards. Rather than relying on grades alone to stimulate students, this paper explores how engendering a natural critical learning environment can give students a sense of ownership in their own learning and lead to their commitment to that learning. We examine uses of cooperative learning, shared responsibility, ambiguity, controversy and support in student motivation.

 Christopher, D.A. 20011. Interactive Large Classes: The Dynamics of Teacher/ Student Interaction. Journal of Business & Economics Research, Volume 1 (8), pp 81-98.

The purpose of this paper is to show that there are many techniques and methods to use in stimulating interest and effective learning outcomes in large classes. The paper addresses several alternative teaching formats such as: active learning, collaborative learning, interactive learning which encourage student interaction in the traditional lecture environment. The paper discusses how the web can be used as an instructional tool in large classes to motivate students to find resources, conduct webquests, complete time certain email assignments, and engage in active in-class discussions.

 Cooper, J.L.; Robinson, P. Spring 2000. Getting Started: Informal Small-Group Strategies in Large Classes. New Directions for Teaching and, no. 81, Jossey-Bass Publishers, pp 17-24.

 I got started with discussion pairs in chemistry about ten years ago when I took over teaching the big introductory classes of several hundred students. I got started gradually by working a problem with the students and then giving the students one to work on themselves together with their neighbors sitting next to them. Now these activities underpin every class I teach. What propelled me into this was watching colleagues in lecture working a problem on the board: I saw it going into the students’ eyes, down their arms and into their notebooks, but their understanding of the problem was bypassing their brains! Over and over, I saw the students not be able to do similar problems in the tutorial the very next day [Helen Place, personal interview with the authors, Sept. 1998].

 Cooper, J.L.; Macgregor, j.; Smith, K.A.; Robinson, P. Spring 2000. Implementing Small-Group Instruction: Insights from Successful Practitioners. New Directions for Teaching and, no. 81, Jossey-Bass Publishers, pp 63-76.

 As we talked with faculty members around the country who are enlivening their classes with small-group work, they described their approaches with enthusiasm and confidence. Yet faculty members, who are skeptical about these approaches, and even those tentatively interested in trying them, still raise important concerns about both the philosophy and the actual strategies of undertaking group work. “It really can’t be that easy, can it?” they ask, quite rightfully. A frequent concern that surfaces in many discussions about small group learning has to do with the assumption that if you are in favour of it, you are de facto opposed to the lecture in any form. This presumption of the new truth is hardly the attitude that will bring about the kind of institutional change that we are hoping for in the coming years. All the teachers we interviewed believe deeply in small-group learning but also spend a significant amount of time lecturing, leading whole-class discussions, and engaging in other kinds of teaching approaches. This is our practice as well.  Lecture and small-group work must be framed as both/and endeavours, not either/or ones; yet somehow the message is too often sent that to be in favour of small-group learning is to be completely anti-lecture.  In this chapter we will address a number of concerns about using small-group work that have emerged in the professional literature and that we have encountered as we discussed this approach with colleagues. We will address these concerns based in part on our reading of the literature, but more particularly on the experiences of the practitioners whose approaches are featured in this volume.

 Cooper, J.L. & Robinson, R. Spring 2000.The Argument for Making Large Classes Seem Small. New Directions for Teaching and Learning, no. 81, Jossey-Bass Publishers, pp 5-16.

 Maria Bravo is hurrying to Dr. Robert Webking’s Introduction to Politics class this warm October morning. She is among 560 students taking this fall 1998 class at the University of Texas, El Paso. She arrives a few minutes early and is given a handheld computer after presenting her student identification card to the teaching assistant. Webking often begins the class with a short, multiple-choice quiz on the assigned reading. On this day, however, he begins by lecturing on the day’s topic: the concept of freedom as articulated by Plato. After about fifteen minutes, he shows a multiple-choice question on a large overhead screen asking students whether freedom should be absolute for all human beings or whether it should be dependent on several extenuating circumstances. The class is given a minute to reflect on the question, and Maria then enters her response on the computer. Two students sitting beside her use the computer to enter their responses. Students throughout the classroom are doing the same thing, and within a minute or two Webking has hundreds of responses. These answers are tallied by the computer and shown on the screen. As Webking expects based on prior semesters’ experiences, most students indicate that freedom should be absolute for all human beings. He then displays a brief cartoon of an infant crawling toward a can of Drano that is in a cupboard under a sink. The class, 65 percent of whom had chosen the absolute freedom response, chuckle ruefully and buzz among themselves. Webking invites the students to discuss briefly, in pairs or trios, the question just posed and to determine whether they would like to change their answers. After a minute or so, he continues lecturing for another fifteen minutes before posing another question to the students. Webking notes that this class, composed of 70 percent Latino students (the all-campus average) has about 80 percent of the students in attendance. Before he initiated this active-learning methodology using Class talk—the computer instructional system just described—the student attendance was about 50 percent. Webking also reports that his students’ exam scores are higher since he initiated his cooperative-learning procedures and that his teaching evaluations are overwhelmingly positive. Time on task (giving full attention to the lecture or activity) has also improved, even for students sitting in the last row.

 Crouch, C.H. & Mazur, E. September 2001. Peer Instruction: Ten years of experience and results. American Association of Physics Teachers, 69 (9), pp 970-977

 We report data from ten years of teaching with Peer Instruction ~PI! in the calculus- and algebra-based introductory physics courses for nonmajors; our results indicate increased student mastery of both conceptual reasoning and quantitative problem solving upon implementing PI. We also discuss ways we have improved our implementation of PI since introducing it in 1991. Most notably, we have replaced in-class reading quizzes with pre-class written responses to the reading, introduced a research-based mechanics textbook for portions of the course, and incorporated cooperative learning into the discussion sections as well as the lectures. These improvements are intended to help students learn more from pre-class reading and to increase student engagement in the discussion sections, and are accompanied by further increases in student understanding.

 Dufresne, R.J.; Gerace, W.J.; Leonard, W.J.; Mestre, J.P. and Wenk, L. 1996. Class talk: A Classroom Communication System for Active Learning. Journal of Computing in Higher Education, 7(3-47), pp 1-26.

 Traditional methods for teaching science courses at the post-secondary level employ a lecture format of instruction in which the majority of students are passively listening to the instructor and jotting down notes. Current views of learning and instruction challenge the wisdom of this traditional pedagogic practice by stressing the need for the learner to play an active role in constructing knowledge. The emerging technology of classroom communication systems offers a promising tool for helping instructors create a more interactive, student-centered classroom, especially when teaching large courses. In this paper we describe our experiences teaching physics with a classroom communication system called Class talk. Class talk facilitated the presentation of questions for small group work, as well as the collection of student answers and the display of histograms showing how the class answered, all of which fed into a class-wide discussion of studentsÕ reasoning. We found Class talk to be a useful tool not only for engaging students in active learning during the lecture hour, but also for enhancing the overall communication within the classroom. Equally important, students were very positive about Class talk-facilitated instruction and believed that they learned more during class than they would have during a traditional lecture.

 Durning, S.J. & Ten Cate, O.J. 2007. Peer teaching in medical education. Medical Teacher, 29: pp 523–524.

 No Abstract.

 Fagen, A. P.; Crouch, C.H.; Mazur, E. April 2002. Peer Instruction: Results from a Range of Classrooms. The Physics Teacher, 40, pp 206-209.

 No Abstract.

 Johnson, D.W.; Johnson, R.T. & Smith, K. 2007. The State of Cooperative Learning in Postsecondary and Professional Settings. Educ Psychol Rev, 19, pp 15–29.

 Modern cooperative learning began in the mid- 1960s (D. W. Johnson & R. Johnson, 1999a). Its use, however, was resisted by advocates of social Darwinism (who believed that students must be taught to survive in a “dog-eat-dog” world) and individualism (who believed in the myth of the “rugged individualist”). Despite the resistance, cooperative learning is now an accepted, and often the preferred, instructional procedures at all levels of education. Cooperative learning is being used in postsecondary education in every part of the world. It is difficult to find a text on instructional methods, a journal on teaching, or instructional guidelines that do not discuss cooperative learning. Materials on cooperative learning have been translated into dozens of languages. Cooperative learning is one of the success stories of both psychology and education. One of the most distinctive characteristics of cooperative learning, and perhaps the reason for its success, is the close relationship between theory, research, and practice. In this article, social interdependence theory will be reviewed, the research validating the theory will be summarized, and the five basic elements needed to understand the dynamics of cooperation and operationalize the validated theory will be discussed. Finally the controversies in the research and the remaining questions that need to be answered by future research will be noted.

 Karl A. Smith. Spring 2000. Going Deeper: Formal Small-Group Learning in Large Classes. New Directions for Teaching and Learning, no. 81, Jossey-Bass Publishers, pp 25-46.

 To teach is to engage students in learning; thus teaching consists of getting students involved in the active construction of knowledge. A teacher requires not only knowledge of subject matter but knowledge of how students learn and how to transform them into active learners. Good teaching, then, requires a commitment to systematic understanding of learning. . . . The aim of teaching is not only to transmit information but also to transform students from passive recipients of other people’s knowledge into active constructors of their own and others’ knowledge. The teacher cannot transform without the student’s active participation, of course. Teaching is fundamentally about creating the pedagogical, social, and ethical conditions under which students agree to take charge of their own learning, individually and collectively [Christensen, Garvin, and Sweet, 1991, pp. xiii, xv, xvi].

 Macgregor, J. Spring 2000. Restructuring Large Classes to Create Communities of Learners. New Directions for Teaching and, no. 81, Jossey-Bass Publishers, pp 47-61.

 No Abstract.

 Meltzer, D.E.; Manivannan, K. 2002. Transforming the lecture-hall environment: The fully interactive physics lecture. American Association of Physics Teachers, 70 (6), pp 639-654.

 Numerous reports suggest that learning gains in introductory university physics courses may be increased by ‘‘active-learning’’ instructional methods. These methods engender greater mental engagement and more extensive student–student and student–instructor interaction than does a typical lecture class. It is particularly challenging to transfer these methodologies to the large-enrolment lecture hall. We report on seven years of development and testing of a variant of Peer Instruction as pioneered by Mazur that aims at achieving virtually continuous instructor– student interaction through a ‘‘fully interactive’’ physics lecture. This method is most clearly distinguished by instructor–student dialogues that closely resemble one-on-one instruction. We present and analyze a detailed example of such classroom dialogues, and describe the format, procedures, and curricular materials required for creating the desired lecture-room environment. We also discuss a variety of assessment data that indicate strong gains in student learning, consistent with other researchers. We conclude that interactive-lecture methods in physics instruction are practical, effective, and amenable to widespread implementation.

 Messineo, M.; Gaither, G.; Bott, J. and Ritchey, K. 2007. Inexperienced versus experienced students’ expectations for active learning in large classes. College Teaching, 55 (3), pp 125-133

 Findings from a survey of undergraduates demonstrate links between students’ experience level and their perceptions and expectations of large classes. The authors made a number of hypotheses, including that students prefer active-learning experiences but expect passive-learning experiences, that experienced students prefer large classes but demonstrate less commitment to them, and that students view low-level skills as more important than high-level skills in large classes. Findings supported the hypotheses, and implications of these findings as they relate to pedagogy in large classes are discussed

Macgregor, J. Spring 2000. Restructuring Large Classes to Create Communities of Learners. New Directions for Teaching and, no. 81, Jossey-Bass Publishers, pp 47-61.

 In a number of new initiatives, the problems of a fragmented curriculum and student isolation in existing large classes are addressed through peer-facilitated learning opportunities, or more ambitiously, by restructuring the curriculum to create linked classes.

 Nicol, D.J. October 2003. Peer Instruction versus Class-wide Discussion in Large Classes: a comparison of two interaction methods in the wired classroom Studies in Higher Education Volume 28, No. 4 pp457-47.

 Following concerns about the poor conceptual understanding shown by science students, two US research groups have been experimenting with the use of ‘classroom communication systems’ (CCSs) to promote dialogue in large classes. CCS technology makes it easier to give students immediate feedback on concept tests and to manage peer and class discussions. Improvements in conceptual reasoning have been shown using these methods. However, these research groups have each piloted different discussion sequences. Hence, little is known about which sequence is best and under what circumstances. This study compares the effects of each sequence on students’ experiences of learning engineering in a UK university. The research methods included interviews, a survey and a critical incident questionnaire. The results demonstrated that the type of dialogue and the discussion sequence have important effects on learning. The findings are discussed in relation to social constructivist theories of learning and in relation to the implications for teaching in wired classrooms.

 Oakley, B.; Felder, R.M.; Brent, R.; Elhajj, I. 2004. Turning Student Groups into Effective Teams. Journal of Student Centered Learning, 2 (1), pp 9-34.

 No Abstract