EucXylo Projects

A number of EucXylo research projects are currently ongoing, with more to come!

See below for brief descriptions of some of our ongoing projects:


The physiological and genetic underpinnings that influence the secondary growth of Eucalyptus grandis, when subjected to different levels of water availability

Researcher: Mr Rafael Keret (Ph.D. candidate)

Considering that wood is an incredibly valuable source of renewable biomaterial and biofuel products, it is essential that we understand how the underlying mechanisms that drive wood formation function, to apply this knowledge to the improvement of the quantity and quality of wood. In the context of Eucalyptus, water availability seems to be an essential factor that governs eucalypt wood properties, and consequently the productivity thereof. In order to cope with variations in water content, eucalypts have evolved mechanisms to induce structural changes in the xylem tissue to account for these changes. This study will focus on building an understanding of xylogenesis in eucalypts, in response to water surplus and deficit. To do so, the changes in morphological features, gene expression and protein translation will be compared between E. grandis plants that are experiencing drought and well-watered conditions. This differences in stem sections may offer clues as to how the structures of the cells confers an adaptation during water deficit. Furthermore, an “omics” (transcriptomics) approach will enable us to identify genes that underpin these morphological features and will offer clues as to how these changes are brought about. The localisation of proteins that are encoded by these genes may provide further evidence to determine what are the main drivers that influence stem structure in Eucalyptus.

 


Xylem development in Eucalyptus cladocalyx under cyclic drought conditions

Researcher: Ms Gugu Gama (Ph.D. candidate)

This project aims to explore the development of xylem in Eucalyptus cladocalyx focusing on the relationship between cambium growth, exposure to cyclic drought and varying temperature changes. Data has been collected for sixty E. cladocalyx seedlings that were exposed to several drought treatments and temperature variations. Images of the cambium of these seedlings were captured using polarizing light microscopy as well as bright-field microscopy. ImageJ is currently being used to analyse the changes in the cambium at the different stages of the drought treatment, and a study aim is to develop a method of capturing the dynamics of xylem development from image data. A further aim is to compare the E. cladocalyx results to those from Eucalyptus species that are not drought-tolerant, to identify the key differences characterising xylem development under water-stressed conditions.

 


Advanced imaging of developing xylem

Researcher: Dr Letitia Schoeman (Postdoctoral Research Fellow)

Knowledge of the process by which the cambium produces wood has progressed very slowly and this knowledge gap is largely due to difficulties in visualising the 3D organisation of the cambium and the lack of non-destructive methods with sufficient resolution to study the developmental processes of wood formation. Non-destructive visualisation of the developing xylem in living, growing plants is an exciting frontier. This project is mainly focused on exploring and assessing various approaches to non-destructively visualise and quantify the developmental processes in differentiating xylem in eucalypts, making use of cutting-edge techniques such as X-ray micro- and nano-CT, MRI, PET, and confocal and correlative microscopy. The goal would be to visualise and characterise the properties of living xylem quickly and repeatedly, with as little damage to the tree as possible to better understand how eucalypts form their wood. Ultimately, an ideal outcome would be to develop one or more of these approaches to enable imaging of living cambial cells and differentiating xylem.

 


Investigating the photosynthetic and hydraulic trade-off during drought recovery in eucalypts

Researcher: Mrs Alta Saunders (Ph.D. candidate)

Stomatal regulation plays a key role in controlling carbon sequestration and water loss and it can be argued that stomata have evolved to balance this trade-off. The regulation of stomatal conductance in leaves are also highly affected by hydraulic changes within a plant, and a plant must constantly balance water dynamics while maximizing carbon uptake. Plant water supply, a major factor in understanding plant-level carbon sequestration, is not only regulated by stomatal conductance, but also limited by a decrease in hydraulic conductance due to embolism formation. The reduction of xylem conductance due to embolism formation cannot be directly regulated by the plant. However stomatal regulation can help prevent runaway cavitation. Understanding plant stomatal and hydraulic responses to water availability, can help improve predictions of plant productivity. Alta’s Ph.D. therefore focuses on how plants respond to drought and recovery after drought, as well as what the role is that stomatal conductance play in drought responses seen within Eucalyptus.

 


Carbon allocation and biomass accumulation within eucalypt clones with contrasting water use strategies

Researcher: Mr Chris Tonkin (M.Sc. candidate)

Eucalypts are some of the fastest growing and most productive trees. This could potentially make them a viable option for removing CO2 from the atmosphere and helping to mitigate the effects of climate change. However, the basis for their high productivity is not yet well understood but it has been noted that their productivity rates are often limited by drought conditions. Chris’ project is focused on studying the physiological processes of carbon uptake, biomass allocation and water use efficiency between a fast-growing varietal (Eucalyptus grandis x longirostrata) and a drought tolerant varietal (Corymbia henryii x torelliana). He will further explore how drought conditions will affect these physiological processes in a semi-controlled greenhouse study.

 


Eco-physiological interactions and resultant variability in xylem properties in four contrasting Eucalyptus clones

Researcher: Mr Mpilo Khumalo (Ph.D. candidate)

This project explores the very short-term eco-physiological responses to variability a range of environmental conditions in four Eucalyptus hybrids.  The work is ultimately concerned with elucidating how these short-term responses in phenomena like transpiration, stem growth, expansion and contraction, stomatal conductance and photosynthesis influence the properties of xylem formed.  And importantly, what are the differences and similarities between the four varieties?  The experimental set-up was designed to specifically consider two sets of contrasts.  Firstly,  E. grandis, in contrast with hybrids between the cold-tolerant E. grandis x E. nitens, and the sub-tropical hybrid E. grandis x E. urophylla.  Secondly, E. grandis, and E. urophylla, in contrast with the hybrid between these two species.  The trees are heavily instrumented with dendrometers, HPV sap flow, Sentech soil water and temperature probes and there is an automatic weather station adjacent to the trees measuring the full gambit of climatic variables.

 


Performance of process-based models in predicting productivity of Eucalyptus grandis x urophylla in South Africa

Researcher: Mr Oluwaseun Gakenou (M.Sc. candidate)

The 3-PG model, a simple process-based model (PBM) has gained popularity with researchers and forest resources managers (especially pulp growers in South Africa) as a practical tool for sustainable forest management strategies. This is because the classical growth and yield models used have become unsustainable as we are in a time where forest growth cannot be reliably predicted from historical bioassay. This project aims to test and set up the 3-PG model for Eucalyptus grandis x urophylla (the most planted hybrid clones by the forest industries in South Africa) and compare its performance with the currently used conventional growth and yield model. The expected outcome from this project is to recommend an operational tool for forest managers, which can accurately predict the growth and yield under changing environment and management practices, provide data useful in the economic management of stands, predict the productivity of a new site that has not been previously afforested.

 


Prediction of the future biomass of Eucalyptus plantations in Zululand

Researcher: Mr Tiza Mfuni (M.Sc. candidate)

Tiza’s M.Sc. project is aimed at predicting the future volumes and potential shifts in site suitability of Eucalyptus grandis x urophylla in coastal Zululand, based on projected climate scenarios according to two Representative Concentration Pathways (RCPs) as described in the latest Synthesis Report by the Intergovernmental Panel on Climate Change (IPCC). The project will explore the use of outputs from selected downscaled Global Circulation Models (GCMs) over coastal Zululand as inputs into the 3-PG (Physiological Processes Predicting Growth) stand level model. In its ability to predict future volumes in different future climate scenarios, Tiza’s project will contribute to the preparedness of the South African timber industry to anticipate and mitigate climate variability.

 

See the EucXylo Research Opportunities page to learn more about the areas our group focuses on.